OPERATION AND MAINTENANCE INSTRUCTIONS

FOR

MJ-1 DIESEL ENGINE DRIVEN HYDRAULIC SYSTEM PORTABLE TEST STAND

APS SYSTEMS (FSCM 60984)

TABLE OF CONTENTS

SEC	TION/PA	ARA	PAGE
I	INTRO	ODUCTION AND GENERAL INFORMATION	1-1
	1-1	Introduction	1-1
	1-2	Scope of Manual	1-1
	1-3	Related Publications	1-2
	1-4	Purpose of Equipment	1-2
	1-5	General Description	1-2
	1-8	Detailed Description	1-3
	1-9	Trailer and Running Gear Assembly	1-3
	1-10	Housing	1-4
	1-11	Diesel Engine	1-4
	1-12	Main Hydraulic Pumps	1-4
	1-13	Hydraulic Fluid Reservoir	1-8
	1-14	Oil Cooler	1-8
	1-15	High Pressure Filters	1-8
	1-16	Low Pressure Filters	1-8
	1-17	Fill Pump System	1-8
	1-18	Bleed System	1-9
	1-19	Protective Devices and Instrumentation	1-9
*	1-20	Electrical System	1-10
	1-21	Engine	1-10
	1-22	Table of Leading Particulars	1-11
	1-23	Consumable Material List	1-11
II	SPECI	TAL TOOLS AND TEST EQUIPMENT	2-1
	2-1	Special Tool and Test Equipment	2-1
III	PREPA	RATION FOR USE AND SHIPMENT	3-1
	3-1	Introduction	3-1
	3-2		3-1

TABLE OF CONTENTS - Continued

SECT	CION/PA	ARA	PAGE
	3-3	Unpacking and Installation	3-1
	3-4	Initial Inspection	3-1
	3-5	Servicing Engine	3-3
	3-6	Preliminary Lubrication	3-6
	3-7	Preparation For Storage	3-6
	3-8	Preparation For Shipment	3-7
IV	OPERA	ATION INSTRUCTIONS	4-1
	4-1	General	4-1
	4-2	Theory of Operation	4-1
	4-3	With Reservoir Selector Valve in "Aircraft	
		Reservoir" Position	4-1
	4-4	With Reservoir Selector Valve in "Stand Reservoir"	•
		position	4-1
	4-5	Fill and Bleed System	4-1
	4-6	Operating Controls and Instruments	4-2
	4-7	Operating Procedures	4-13
	4-8	Preliminary Procedures	4-13
	4-9	Pre-Operation Control Settings	4-13
	4-10	Pre-Operation Fill and Bleed System	4-13A
	4-11	Diesel Engine Starting Procedure	4-14
	4-12	Adjusting Volume and Pressure Settings	4-16
	4-13	Stopping the Test Stand	4-17
	4-14	Emergency Stop	4-18
	4-15	Fluid Sampling	4-18
	4-16	Aircraft Fill and Test Procedure	4-18
	4-17	Positioning and Connecting the Test Stand to	
		Aircraft	4-18
	4-18	Filling the Aircraft Reservoir	4-19
	4-19	Aircraft Fill/Bleed Procedure	4-21
	4-20	Aircraft Testing Procedure	4-22
	4-21	Reservoir Pressurizing Procedure	4-22A

TABLE OF CONTENTS - Continued

SEC	CTION/PA	ARA	PAGE
V	MAIN	TENANCE INSTRUCTIONS	5-1
	5-1	General	5-1
	5-2	Component Removal	5-1
	5-3	Preventive Maintenance	5-2
	5-4	Engine Maintenance	5-2
	5-5	Checking Crankcase Oil Level	5-3
	5-6	Changing Engine Oil	5-3
	5-7	Servicing Oil Filter	5-4
	5-8	Servicing Fuel Filter	5-4
	5-9	Air Cleaner	5-7
	5-10	Oil Bath Cleaner	5-7
	5-11	Servicing Fuel Tank	5-9
	5-12	Servicing Cooling System	5-9
	5-13	Cleaning Cooling System	5-10
	5-14	Flushing the Cooling System	5-10
	5-15	Removing Scale/Rust From Cooling System	5-11
	5-16	Reverse Flushing the Cooling System	5-11
	5-17	Battery Maintenance	5-14
	5-18	Servicing Starting Motor	5-14
	5-19	Servicing Drive Belts	5-15
	5-20	Troubleshooting	5-15
	5-21	Component Repair	5-27
	5-22	Cleaning	5-27
	5-23	Repair or Replacement	5-28
	5-24	Filters	5-28
	5-25	Inspection	5-28
	5-26	Hydraulic Reservoir Inspection	5-28
	5-27	Fill System Filter Inspection	5-31
	5-28	Boost System Filter Inspection	5-32
	5-29	High Pressure Filter Inspection	5-33
	5-30	Warning Horn	5-34

TABLE OF CONTENTS - Continued

SECT	CION/PA	RA																	PAGE
	5-31	Calibra	tion			•				•	•						٠.		5-35
	5-32	High Pre	essur																5-36
	5-33	Low Pres																	5-36
	5-34	Flowmete																	5-36
	5-35	Fluid Te																	5-36
	5-36	Hourmete																	5-36
	5-37	Test .		• •															5-37
VI	DIAGRA	AMS	•, ,•	• •		•		•	•	•	• •	•	•	•	•	•	•	•	6-1
	6-1	General	• •	• •		•	•	•	•	•	• •		•	•	• ,	•	•	•	6-1
VII	RECOM	MENDED LI	ST OF	SPA	RES	•	•	•	•	•			•	•	•	•	•	•	7-1
	7-1	General	• •	• .		•	•	•	•	• •		•	•	٠	•	•	•		7-1
VIII	DETRO]	IT DIESEL	OPER	ATOR:	S MA	.NU	AL			• .		•	•	•	•	•	•	•	8-1
	8-1	General																	0 1

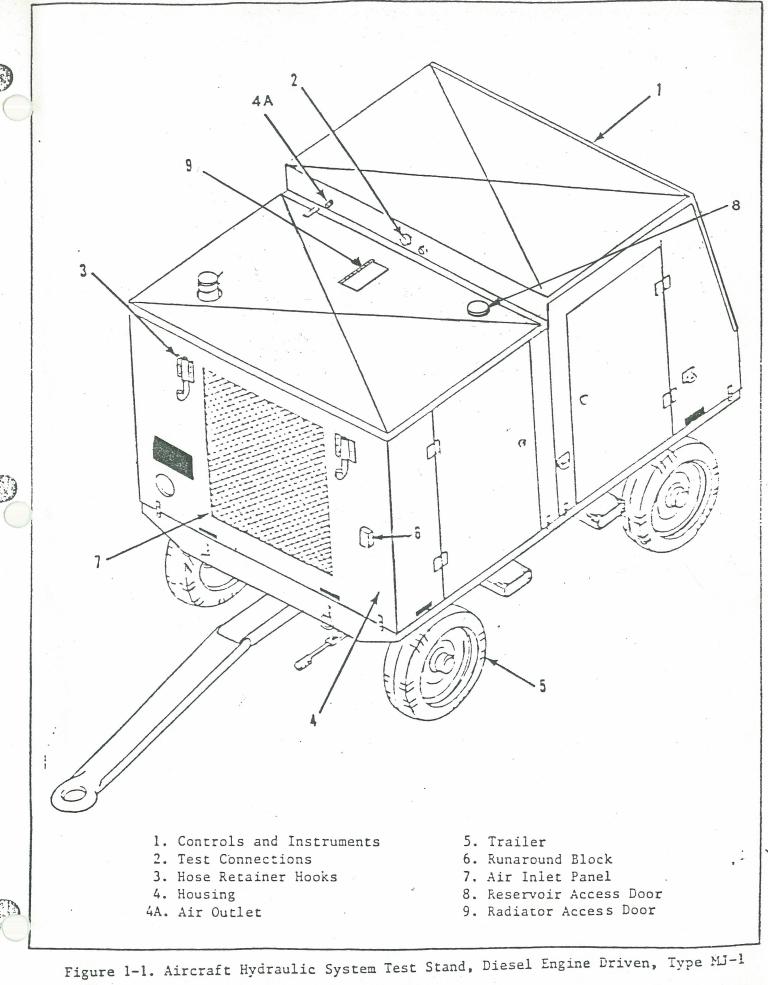
LIST OF ILLUSTRATIONS

FIGURE		
NUMBER		PAGE
1-1	Aircraft Hydraulic System Test Stand, Diesel Engine	
	Driven, MJ-1	1-2A
1-2	Major Components	1-6
3-1	Lubrication Chart	3-8
4-1	Auxiliary Panel Controls and Instruments	4-2A
4-2	Control Panel Controls and Instruments	4-5
4-3	Miscellaneous Controls	4-10
4-4	Temperature Correction Curve	4-17A
5-1	Fuel/Oil Filters (Location)	5-5
5-2	Fuel/Oil Filters (Service)	5-6
5-3	Air Cleaner	5-8
5-4	Hydraulic Reservoir	5-29
5-5	Fill System Filter	5-30
5-6	Low Pressure Filter	5-31
5-7	High Pressure Filter	5-32
6-1	Hydraulic Schematic	6-2
6-2	Flectrical Schematic	6-4

LIST OF TABLES

TABLE		
NUMBER		PAGE
1-1	Leading Particulars	1-12
1-2	Consumable Materials	1-16
2-1	Test Equipment List	2-1
4-1	Auxiliary Panel Controls and Instruments	4-3
4-2	Control Panel Controls and Instruments	4-6
4-3	Miscellaneous Controls	4-9
5-1	Troubleshooting	5-16
5-2	Lubrication and Preventative Maintenance Schedule	5-26

SECTION I


INTRODUCTION AND GENERAL INFORMATION

- 1-1. INTRODUCTION. This publication is the basic manual of Operation and Maintenance Instructions for the MJ-1 Aircraft Hydraulic System Test Stand, Diesel Engine Driven, manufactured by APS Systems, Port Hueneme, CA 93041 (FSCM 60984). The Aircraft Hydraulic System Test Stand will be referred to as Test Stand throughout this manual.
- 1-2. SCOPE OF MANUAL. This manual is divided into eight sections as follows:
- a. Section I, Introduction and General Information. Contains the information pertaining to the scope of the manual, and a simplified description of the equipment.
- b. Section II, Tools and Test Equipment. Contains the list of tools and test equipment required to operate and maintain the Test Stand.
- c. Section III, Preparation for Use and Shipment. Contains the instructions for set-up and check-out prior to operation and to prepare the unit for shipment.
- d. Section IV, Operation Instructions. Contains the theory of operation and detailed instructions for operating the Test Stand.
- e. Section V, Maintenance Instructions. Contains inspection, maintenance, troubleshooting, repair, disassembly, cleaning, assembly and testing instuctions.
- f. Section VI, Diagrams. Contains the electrical and hydraulic diagrams required to operate and maintain the Test Stand.

- g. Section VII, Recommended List of Spares.
- h. Section VIII, Detroit Diesel Operators Manual.
- 1-3. RELATED PUBLICATIONS.
 - a. Detroit Diesel series 53 operators manual.
- 1-4. PURPOSE OF EQUIPMENT. The Test Stand (See Figure 1-1) is a trailer mounted mobile testing unit, for rapidly and accurately determining the performance and operating characteristics of aircraft hydraulic systems. The Test Stand incorporates systems to perform the following test and service operations without the necessity of starting the aircraft engines.
- a. Test function and operation of aircraft hydraulic systems components.
 - b. Test the aircraft systems for internal and external leakages.
- c. Drain, flush, and refill the aircraft hydraulic systems with micronically-filtered hydraulic fluid.
 - d. Bleed air from aircraft hydraulic systems.
- 1-5. GENERAL DESCRIPTION.

NOTE

The terms"left side" and "right side" as used below are as viewed from the control panel at the rear of the test stand facing towards the towbar at the front.

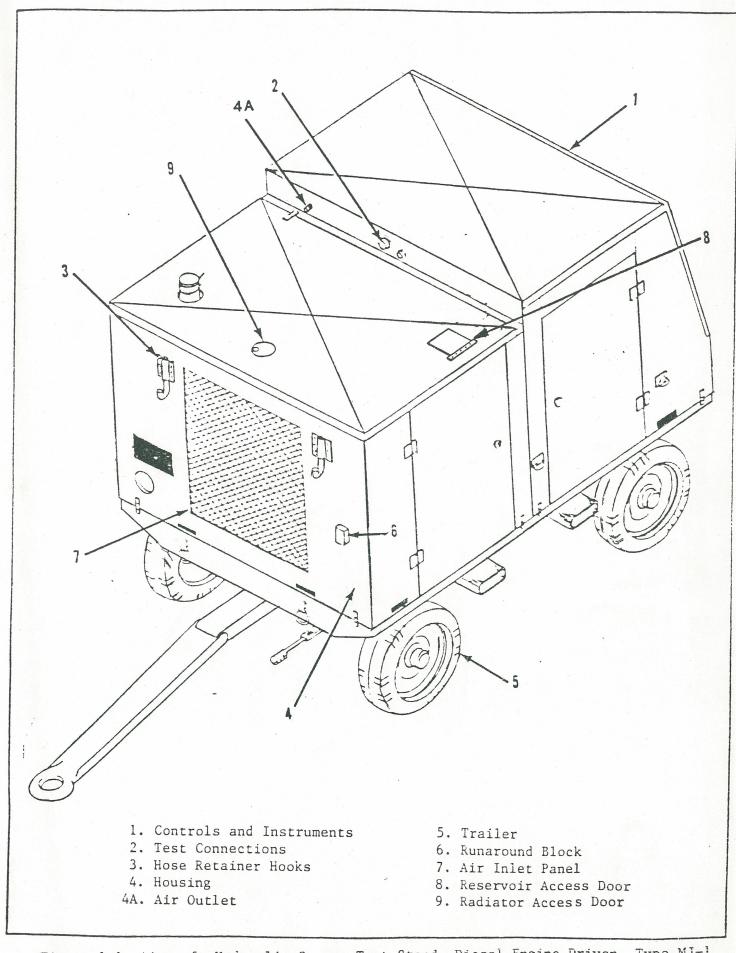


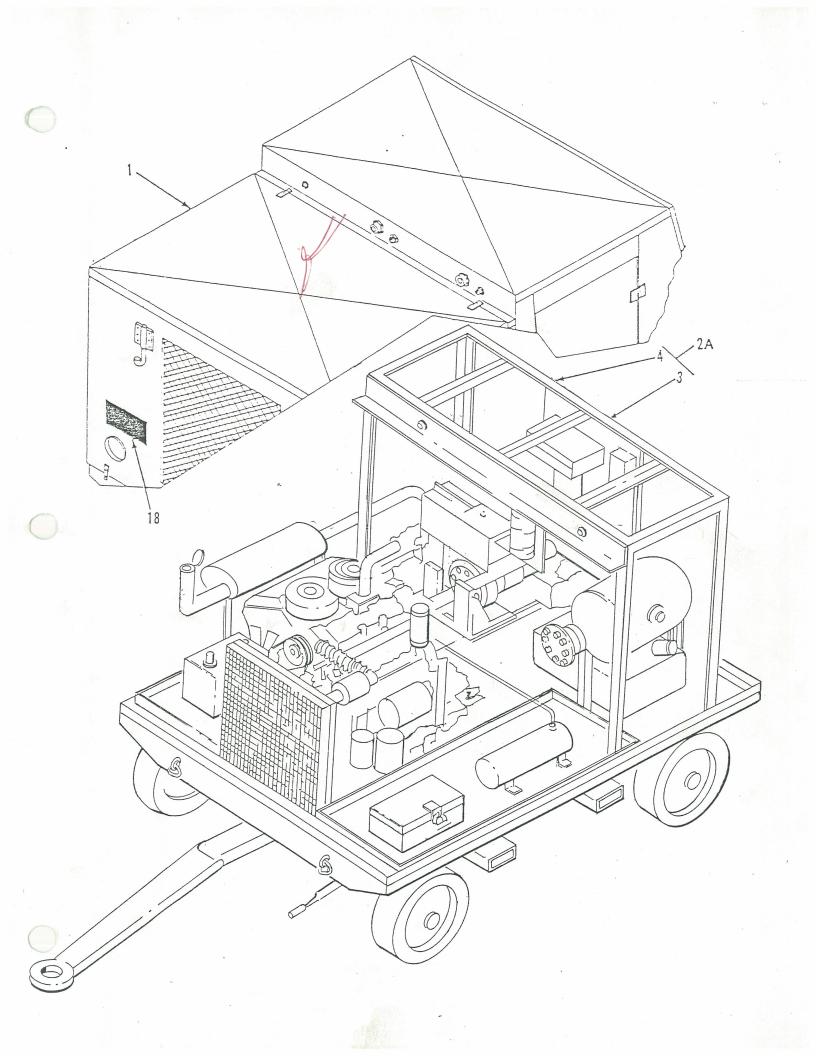
Figure 1-1. Aircraft Hydraulic System Test Stand, Diesel Engine Driven, Type MJ-1

Operator's controls and instruments (1, Figure 1-1) are located at the rear of the Test Stand. External test connections (2) are located on top of the Test Stand to the rear of the control panel. Hoses are supplied with the Test Stand for connection to the aircraft. Hose retainer hooks (3) are provided on the front of Test Stand to store the hoses. Run around connections (6) are provided at the front of the unit to allow checkout without connecting to an aircraft.

The Test Stand operating components, including the control panels, are enclosed in a steel, weather-resistant housing (4), mounted on a four wheel trailer (5), capable of being towed by a vehicle at speeds up to 20 miles per hour. Hand-operated, mechanical-type parking brakes which act upon the rear wheels, hold the Test Stand in a fixed position while in operation or when parked on a grade. The unit may be fork lifted by inserting fork lift under the frame at market channels. The major components and systems of the Test Stand are as follows: trailer and running gear, housings, diesel engine, gearbox, main hydraulic pump, oil cooler, fill pump, and bleed system, fuel reservoir, hydralic reservoir, hydraulic filters, instruments and controls and the electrical system.

1-6, 1-7. NOT USED

1-8. DETAILED DESCRIPTION.


1-9. TRAILER AND RUNNING GEAR ASSEMBLY. The trailer frame (1, Figure 1-2) is of welded steel construction. The trailer rolls easily on four steel wheels equipped with 6.(0 x 9.00 inch, 6 ply tires. Individual leaf springs for each wheel give the Test Stand good cushioning against road shocks and rough terrain, protecting the components of the Test Stand. A hinged towbar (2) permits ease of positioning of the conventional type with steering knuckles, tie roads, and king pins. A hand lever (3) sets the rear wheel brakes, holding the Test Stand in a fixed position during test operation or in parking on a grade. Two tie-down rings (4) are provided on both the front and rear of the trailer frame to permit tiedown of the Test Stand for storage or shipment.

- 1-10. HOUSING. (4, Figure 1-1) Hinged doors on the sides of the cabinet permit access to all internal components. A hinged instrument panel cover protects the controls when the Test Stand is not in use. A screened air inlet panel (7) is provided for both radiators. A reservoir access door (8) is installed for servicing the reservoir and radiator access in provided by door (9).
- 1-11. DIESEL ENGINE. (24, Figure 1-2) A 4 cylinder in-line Detroit Diesel engine, from the Series 53N family provides power for test stand operation. The engine is mounted on a base attached to the test stand frame assembly. Power is transmitted from the engine to the gearbox and from the gearbox to the hydraulic pump.
- MAIN HYDRAULIC PUMP. (25, Figure 1-2). The main hydraulic 1-12. pump supplies fluid at high pressure for testing of aircraft hydraulic systems. The pump consists of a high pressure pump section and integral boost pump section. The pump contains a manual volume control (13) for varying the output volume and a compensator control (14) to regulate the output volume by changing the stroke length of the pumping pistons. Change in piston stroke length is controlled by system pressure so that when the pump is operating at a pressure less than the maxium setting of the compensator control, the pump delivers full volume. When the system pressure reaches the compensator control setting, the pump output is automatically reduced to the amount of flow required to maintain this pressure throughout the systems. The compensator control provides and adjustable range of 500 to 5000 psig with flow varying to 35 gpm maxi-The volume control permits regulation of maximum volume output by limiting the angle of a cam plate through a hydraulic piston within the pump. The return line for the test system also includes a flowmeter (2) to monitor fluid flow.

The flowmeter (26) is a transparent tube type equipped with a metal float. The flowmeter scale is calibrated for 3 to 35 gpm of hydraulic oil at 100 degrees F. A calibration curve is mounted on the control and instrument panel access door. This calibration curve is used for converting flowmeter indications at fluid temperatures other than 100 degrees F.

KEY TO FIGURE 1-2

- 1. Trailer and Running Gear Assembly
- 2. Hinged Towbar
- 3. Hand Lever
- 4. Tie Down Rings
- 5. Oil Cooler Radiator
- 6. Bleed Valve
- 7. Radiator
- 8. Level Indicator
- 9. HP Filter
- 10. LP Filter
- 11. Fill Pump
- 12. Filter
- 13-20 Not Used
- 21. Reservoir
- 22. Filler
- 23. Cover
- 24. Diesel Engine
- 25. Main Pump
- 26. Flowmeter
- 27. Selector Valve

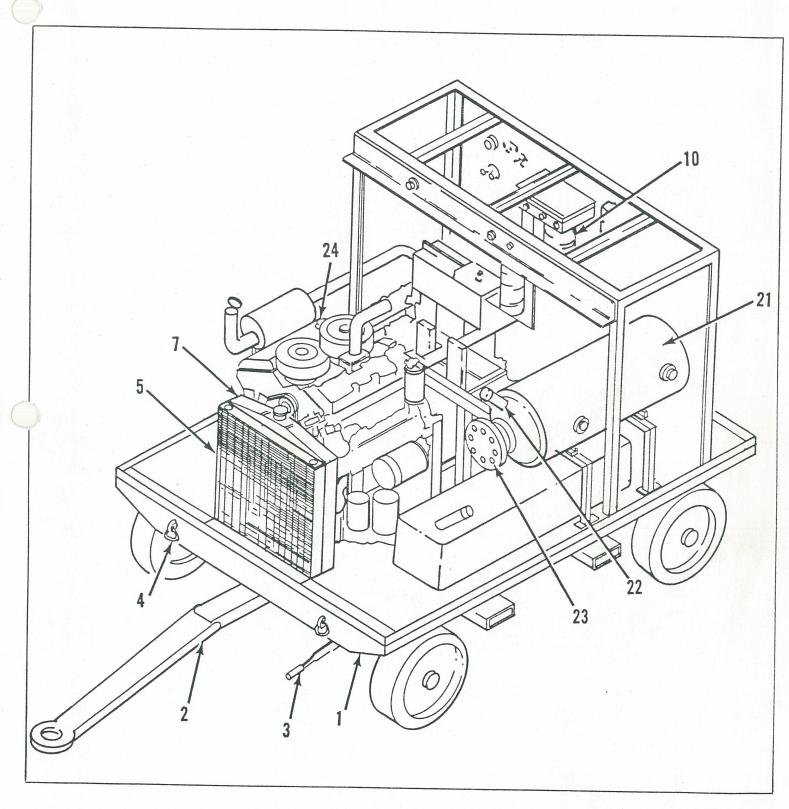


Figure 1-2. Major Components. (Sheet 1 of 2)

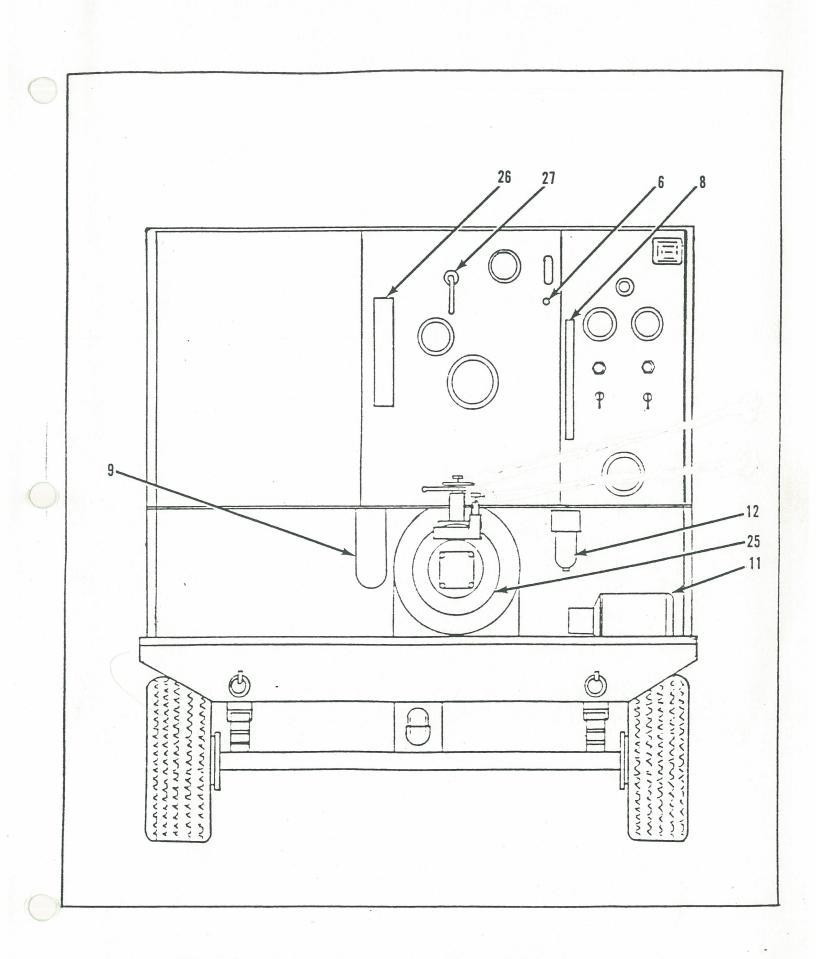


Figure 1-2. Major Components, Rear View. (Sheet 2 of 2)

- 1-13. HYDRAULIC FLUID RESERVOIR. (21, Figure 1-2). The pressurized reservoir is designed to supply fluid to the systems during operation in "Stand" position of the reservoir selector valve (27) and to supply fluid to the fill systems. A filler neck (22) and cleanout cover (23) is located on the end of the reservoir allowing manual filling. A fluid level indicator (8) of the sight glass type is also provided on the control panel.
- 1-14. OIL COOLER. (5, Figure 1-2). The oil cooler consists of a heat exchanger type cooler in front of the radiator (7). The radiator an draws air through the cooler to cool the hydraulic oil.
- 1-15. HIGH PRESSURE FILTER. (9, Figure 1-2). A filter is located in the output line of the system. A five-micron filter element gives the pressurized fluid a final cleaning before outlet to the aircraft. The filter bowl is incorporated into the high pressure manifold assembly.
- 1-16. LOW PRESSURE FILTER. (10, Figure 1-2). A 10 micron low pressure filter in the outlet line from the boost pump is incorporated to clean hydraulic fluid of contamination before entering the high pressure pump section. The filter bowl is incorporated into the low pressure manifold assembly. Both filters are readily maintained through access doors. A drain is provided for the low pressure filter.
- 1-17. FILL PUMP SYSTEM. (See Figure 1-2). This system is used to fill the Test Stand hydraulic systems with fluid in the preparatory operation of readying the Test Stand for scheduled operation. It also functions to fill the aircraft reservoir with pressurized fluid from the Stand reservoir. The system includes an electric motor driven fill pump (11) with filter (12), system actuating valves, relief valve and check valve.

NOTE

Reservoir selector valve must be in "Aircraft" reservoir position when performing filling operating

- 1-18. BLEED SYSTEM. (See Figure 1-2). The Test Stand hydraulic system incorporates a pushbutton bleed valve (6) to bleed air from the system. Air and oil is bled from the low pressure filter (10) in the system and routed to the reservoir (21). The bleed system is incorporated into the low pressure manifold assembly.
- 1-19. PROTECTIVE DEVICES AND INSTRUMENTATION. Protective devices and instrumentation are provided as follows:
- a. Relief valve (10, Figure 6-1) in the low pressure section protects the oil cooler (6) and flowmeter (1) from over pressurization.
- b. Thermoswitch (11) in the high pressure pump inlet circuit actuates to sound a warning horn when the fluid temperature reaches 160-170 degrees F.
- c. Low pressure switch (17) protects the high pressure pump against cavitation due to low inlet pressure or boost pump failure. If the pressure drops below 40 psig, the horn will sound.
- d. Check valve (10) allows fluid to bypass the boost pump in the event of pump failure, preventing fluid starvation of high pressure pump.
- e. Differential pressure switch (23) across high pressure filter ports illuminates a red warning light on the control panel to indicate clogged filter element. A duplex gage (15) across the fill system filter (35) monitors inlet and outlet pressures at all times. Low pressure filter is monitored with selector valve (25) positions of boost pump outlet and HP pump inlet.
- f. Check valve (14, 34) are located in the hydraulic lines to prevent any back flow between hydraulic circuits.
- g. Relief valves (40) protects the air receiver (38) and the aircraft reservoir respectively from overpressurization by the air compressor (37).

- h. Circuit breakers (Figure 6-2) are provided for overload protection of various circuits.
 - i. Low engine oil pressure switch sounds warning horn.
 - j. High water temperature switch sounds warning horn.
 - k. Low fuel level switch in fuel tank sounds warning horn.
- 1. Complete instrumentation and controls are located on the control panels. Refer to Section IV for description of function and location of all controls.
- 1-20 ELECTRICAL SYSTEM. (See Figure 6-2). The Electrical system provides the circuits and controls for Test Stand functioning of electrical components. The electrical system's controls are mounted on the inside of the upper front outlet panel at the front of the Test Stand, with a hinged access door to permit facility of maintenance and Two 24-vdc batteries connected in parallel provide power inspection. for test stand engine starting and operation of the fill system motor. The main power switch turns on the ignition and the start button cranks over the diesel. A Tachometer/Hourmeter is mounted on the instrument panel to record engine speed and Test Stand operating hours. A warning horn (AHI) provides audible warning in the event of high fluid temperatures low boost pressure in either system and in the event of low engine oil pressure, high temperature and low fuel level. A single switch (33) is provided on the auxiliary control panel to turn on panel lights and the lights at the back of the Test Stand (PL3 thru PL5).
- 1-21. ENGINE. The engine is a four cylinder Detroit Diesel Engine of the 53N Series which generates 125 hp at 2500 rpm. The engine provides power for operating the high-pressure pump. Panel controls include a manual THROTTLE control, engine START switch, and ENGINE SHUTDOWN control. Panel indicators include a Tachometer/hourmeter, Oil pressure gage indicator, Ammeter gage, Oil temperature gage, and Water temperature gage. Pulling the handle of the ENGINE SHUTDOWN control,

mechanically linked to the fuel injector system, fully closes the fuel injectors, starving the engine of fuel at each cylinder.

Accessories to the engine include a governor, an oil-bath type air cleaner, a cooling system, a fuel tank, and a gearbox.

- a. Governor. The governor is a constant speed, rotary drive type. It is set for a maximum no-load speed of 2650 rpm and full-load speed of 2500 rpm. Idle is set for 550 rpm.
- b. Cooling System. The cooling system has an 11 gallon capacity. The system has a filler port, a drain cock, a temperature gage, and an over temperature switch.
- c. Fuel Tank. The fuel tank has a 42.5 gallon capacity. The tank is fitted with external filler port, a drain plug, a fuel level transmitter, and a low level switch.
- d. Gearbox. The gearbox is connected to the engine drive shaft and the hydraulic pump is connected to the gear box.
- 1-22. TABLE OF LEADING PARTICULARS. Refer to Table 1-1 for the table of leading particulars.
- 1-23. CONSUMABLE MATERIAL LIST. Refer to table 1-2 for the list of consumable materials required to operate, service and maintain the test stand.

Table 1-1. Leading Particulars

-40 degrees F to +125
degrees F.
-65 degrees F to +160
degrees F.
100 percent
8-1/2 degrees maximum in
any direction from hori-
zontal operating plane.
30 Useable U.S. Gallons
Stainless steel
MIL-H-5606
High-pressure, axial-position,
variable-stroke, pressure
compensated with intergral
low pressure boost section
0.25
0-35 gpm up to 3000 psig
0-15 gpm up to 5000 psig

Table 1-1. Leading Particulars - Continued

Discharge pressure	. 3000 ± 50 psig when deliver-
	ing 35 gpm with zero flow
	pressure setting at 3000 psig
Boost pump capacity	. 40 gpm at 200 psig
Fill Pump	
Type	Motor driven internal gear
Capacity	2 gpm at 150 psig
High Pressure Filter	
Rating	35 gpm at 5000 psig
Size of element	5 micron
Specification	MIL-F-27656
Low Pressure Filter	
Low Pressure Filter Element	10 micron, two element
	filter AN 6236-3
Fill/Filter Element	10 micron, single element
	filter AN6235-4A
Oil Cooler	
Type	Air-to-oil, fan cooled
Drive Unit	
Engine	125 hp at 2500 rpm, 4 cylind-
	er in-line, 24 vdc electrical
	system

Table 1-1. Leading Particulars - Continued

Table 1-1. Leading Particulars - Continued

Cabinet	Metal enclosure with acces
	panels; hinged doors; hose
	storage; weather-resistant
	properties
Physical Data	
Dimensions (Approximate)	
Length	108 inches
Width	70½ inches
Height	74 inches
Weight (dry)	4000 pounds
	•

Table 1-2. Consumable Materials

Nomenclature	Part Number
Adhesive (stud-lock)	Loctite Corp. Cat. No. 73-31
Agent, degreasing	MIL-D-12491
Compound, corrosion-preventive	MIL-C-6529A
Compound, silicone	MIL-S-8660
Desiccant, activated	MIL-D-3464
Fluid, hydraulic	MIL-H-5606 or MIL-H-83282
Fuel, Diesel	VV-F-800 or MIL-F-5624 (RP-5),
	MIL-F-5624 (JP4 or JP5)
Glue, Epxoy	Devcon 5 Minute Epoxy
	Devcon Corp.
	Danvers, MA 01923
Grease	MIL-G-18790
Grease, automotive	MIL-G-10924
Lubricant	MIL-L-2105 or MIL-L-10324
Oil, Engine	MIL-L-2104 or MIL-L-10295
Paint, external enamel	MIL-STD-808, Code No. DG
Paint, exterior enamel	STD-595, color 31136 (Red)
Hydraulic control panel	
Paint, interior enamel	MIL-STD-808, Code No. LG
Paint, pre-treat	MIL-C-15328
Paint, primer, epoxy	MIL-P-23377
Paint, primer, zinc chromate	MIL-P-6889
Paper, emery	P-P-105
Powder, lapping	MIL-L-17862
Preservative	MIL-H-6083
Element, engine oil filter	
element, engine fuel filters	
Element, fill system filter	AN6235-4A

Table 1-2. Consumable Materials - Continued

Nomenclature	Part Number
Element, boost system filter	AN6236-3
Element, high-pressure filter	MIL-F-27656
Sealant	VC-3
Solvent, cleaning	P-D-680, Type II
Solvent, mineral spirits	MIL-C-12491
Cape, water resistant,	PPD-T-60
pressure sensitive	
Cape, teflon	MIL-T-22730
older	QQ-S-571
ubricant, gearbox	SAE 30 wt., MIL-L-2104
	or MIL-10295
reservative, crankcase & fuel tank	MIL-L-21260

SECTION II

SPECIAL TOOLS AND TEST EQUIPMENT

2-1. SPECIAL TOOLS AND TEST EQUIPMENT. There are no special tools or testing equipment required for the installation, maintenance and testing of the MJ-1 Test Stand.

SECTION III

PREPARATION FOR USE AND SHIPMENT

3-1. INTRODUCTION. The information contained in this section describes the installation functional testing, adjustment, and procedures necessary to prepare the MJ-1 for use. Also, included, are procedure for removal of the test stand if required.

NOTE

Refer to the troubleshooting information given in Section V if an abnormal indication is obtained while testing the system for operation.

- 3-2. PREPARATION FOR USE.
- 3-3. UNPACKING AND INSTALLATION. The Test Stand is shipped completely assembled on fully inflated tires and requires no major assembly of components prior to preparing the Stand for use other than the following procedures:
- a. Strip the waterproof tape from seams, doors and other openings of the cabinet, and strip masking tape from all glass gage faces.
- b. Open all cabinet doors and thoroughly inspect interior of the Test Stand to remove all extraneous packing or cushioning material used to protect internal components during shipment. Small areas of normally exposed metal surfaces may be wrapped with protective covering or tape during shipment. Be certain all such coverings are removed.
- 3-4. INITIAL INSPECTION. It is important to carefully inspect the complete Test Stand for possible damage which may have occurred during shipment. The following initial inspection procedures are recommended:

- a. Check the data apprearing on the Test Stand nameplates to verify it is the type of unit designated in paragraph 1-1 of this manual. If there is any doubt, do not attmpt to operate the Test Stand in accordance with the instructions contained in this manual.
- b. Remove the hose assemblies from the top of the Test Stand. Inspect the hose assemblies carefully for evidence of damage, breaks or loose fittings.

WARNING

The output hose assemblies are subjected to extremely high pressure. Repair any defective hose assembly before using the hose assembly during operation of the Test Stand.

- c. Open the control and instrument panel access door. Inspect all gages, indicators, and controls for evidence of shipping damage. Check that all parts are securely mounted. Check that all manually operated switches and controls operate freely.
- d. Open access doors. Inspect the plumbing installation for damaged tube assemblies, fittings and hose assemblies. Check that all fittings are securely connected and hoses are not deteriorated.
- e. Carefully inspect the electrical wiring for broken wires or frayed insulation. Check that all electrical connections are secure.
- f. Inspect engine for evidence of shipping damage. Check that engine mounting bolts are securely tightened.
- g. Inspect fuel tank and hydraulic reservoir for evidence of physical damage. Check fuel system carefully for evidence of leakage.
- h. Check tires for proper inflated pressure. Normal tire pressure should be 60 pounds with tires cold. Inspect tire treads and casing for cuts or abrasions and remove any inbeded objects from treads.

- i. Check the tow and steering assemblies. Make certain that tie rods have not been bent or damaged and that the steering apparatus swings freely.
- j. Check hand brake assembly be setting the hand brake and testing rear wheels for braking action.
- k. Inspect the Test Stand trailer and cabinet for any damage, making certain that all bolts and screws are secured. Check doors and door latches for proper closing and locking.

3-5 SERVICING ENGINE

- a. Servicing Engine After Temporary Storage (30 days or less) To service the engine after temporary storage, proceed as follows:
 - (1) Visually inspect engine to make certain all accessories are in place and securely mounted. Check electrical connections to engine.
 - (2) Remove all sealing materials from engine openings.
 - (3) Open fuel tank drain plug (located under fuel tank and drain until water-free fuel is evident. Close drain cock
 - (4) Check level of diesel fuel in fuel tank (fuel level gage located on control panel) and, if necessary, add diesel fuel (MIL-L-5624 or equivalent).
 - (5) Check level of lubricating oil in crankcase. Add lubricating oil (MIL-L-2014) to bring oil level to FULL mark on dipstick. Use grade 30 above 0°C (32°F) or grade 10 below 0°C (+32°F).
- b. Servicing Engine After Long-term Storage (30 days or more). To service the engine after long-term storage, proceed as follows:

- (1) Visually inspect engine to make certain all accessories are in place and securely mounted. Check electrical connections to engine.
- (2) Remove all sealing material from engine openings, fuel tank, electrical equipment, and exhaust outlet.

WARNING

Use cleaning solvents, P-D-680, Type II, in a well ventilated area. Do not inhale solvent vapor or allow solvent to contact skin. Keep solvent away from open flame. Failure to comply may result in injury to personnel.

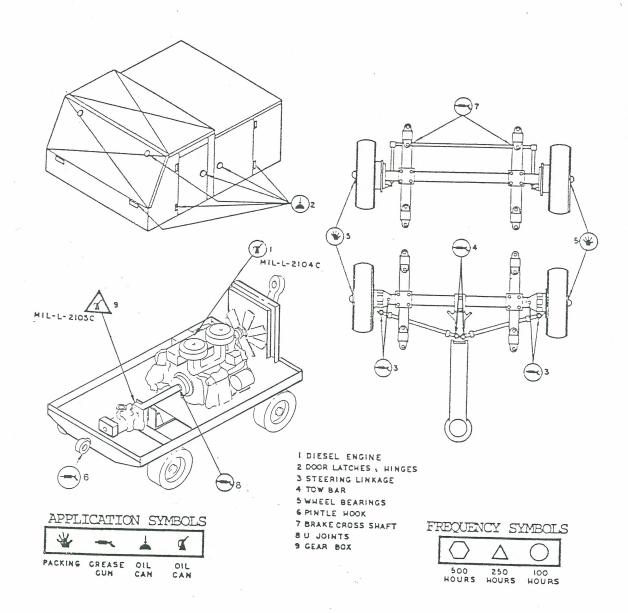
- (3) Remove rust preventative from external surfaces of engine with solvent Federal Specification P-D-680, Type II, or equivalent.
- (4) Remove paper strips from between pulleys and belts.
- (5) Remove crankcase drain plug and drain preservative oil into suitable container.
- (6) Replace crankcase drain plug and torque 25 35 ft-lbs. Fill crankcase with 11 quarts (plus 2 quarts if new oil filter is installed) of lubricating oil MIL-L-2104.
- (7) Open fuel tank drain plug (located under fuel tank) and drain until water-free fuel is evident. Close drain cock.
- (8) Fill the fuel tank with diesel fuel.
- (9) close coolant drain cock (located on engine radiator) and fill engine cooling system with 5 gallons of mixture of 50 percent distilled water and 50 percent coolant O-A-548

If engine will be exposed to freezing temperatures, check cooling system specifications and add coolant O-A-548 in accordance with manufacturer's specifications.

c. Servicing Hydraulic System. Service the hydraulic system, prior to use, as follows:

WARNING

Depressurize hydraulic system prior to servicing. Failure to comply may result in injury to personnel.


- (1) Check hydraulic fluid reservoir for preservative fluid. If present, remove outlet cap and open reservoir drain drain valve and drain reservoir. Close drain valve and replace outlet cap.
- (2) Remove drain plugs at boost pump system filter and drain preservative fluid (if necessary). Replace plugs.
- (3) Remove cap on filler neck and fill test stand reservoir with hydraulic fluid MIL-H-5606, or MIL-H-82382, until reservoir level indicator indicates 3/4 to 7/8 full. Set system power to OFF position.
- d. Servicing Batteries. Two 24-vdc storage batteries connected in parallel are furnished with the test stand and in located in battery compartment.

WARNING

When handling batteries, use face shield or goggles, rubber gloves and apron.

- (1) Remove battery compartment cover. Disconnect and remove batteries.
- (2) Check electrolyte level. Fill battery cells with distilled water to level indicated or approximately 3/8 inch over battery plates.
- (3) Charge each battery using a 24-vdc battery charger at a rate of approximately 2-1/4 amperes for at least 18 hours. Check each cell, using a hydrometer, for a specific gravity reading of 1.275 to 1.285.
- (4) Install and connect batteries.
- e. Servicing Gearbox. Remove drain plug from gearbox to allow corrosion-preventive compound, if present, to drain out. Replace drain plug and fill gearbox with two guarts of lubricant.
- 3-6. PRELIMINARY LUBRICATION. Carefully inspect the Test Stand lubricating points referred to in Figure 3-1. Be sure the initial lubrication exists at all specified points.
- 3-7. PREPARATION FOR STORAGE. Prepare the Test Stand for storage as follows:
- a. Drain the reservoir (21, Figure 1-2) by opening the reservoir drain valves. Make certain drain valves are closed after reservoir has been completely drained.
- b. Drain hydraulic fluid from the hydraulic system at the low pressure filter drain (10, Figure 1-2). When completely drained, replace drain cap.
- c. Drain the fluid from the high pressure pump, (9, Figure 1-2) by removing the drain plug located in the bottom of the pump case. When completely drained, replace plug. Refill pump case with MIL-H-6083A.

- d. Fill the Test Stand reservoir at the filler neck with preservative fluid specifications MIL-H-6083A, until the reservoir level gage indicates 7/8 full.
- e. Operate Test Stand (Section IV) for approximately 10 minutes. Operate system fill valves to fill each hydraulic system with preservative oil.
- f. Drain fuel reservoir by opening reservoir drain valve. Make certain drain valve is closed after reservoir has been completely drained.
- g. Place serveral bags of activated desiccant MIL-D-3464 inside Test Stand cabinet and near electrical components
- h. Fasten doors and latches securely; tape seams and openings with pressure-sensitive, water resistant tape, Specification PPP-T-60.
- j. Secure hoses on retainer hooks. Be sure all external hydraulic connections are capped.
- 3-8. PREPARATION FOR SHIPMENT. The Test Stand does not require an external packing container. For shipment, prepare the Test Stand in the same way as for storage, paragraph 3-7, steps at through j.

m5-1

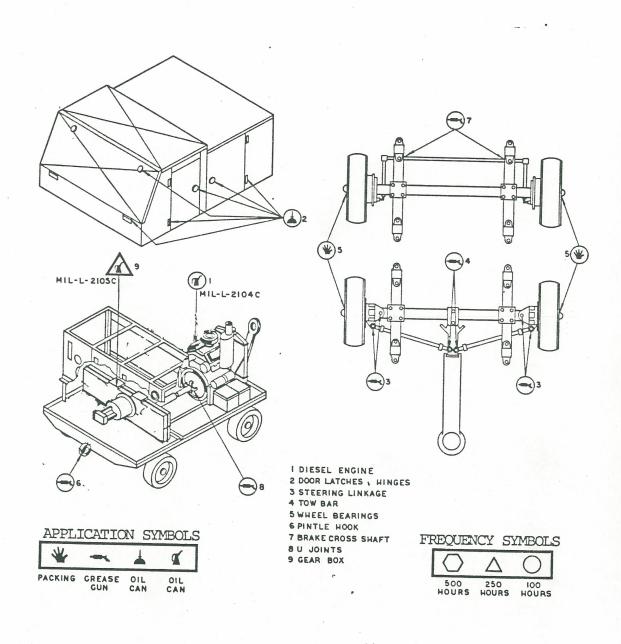
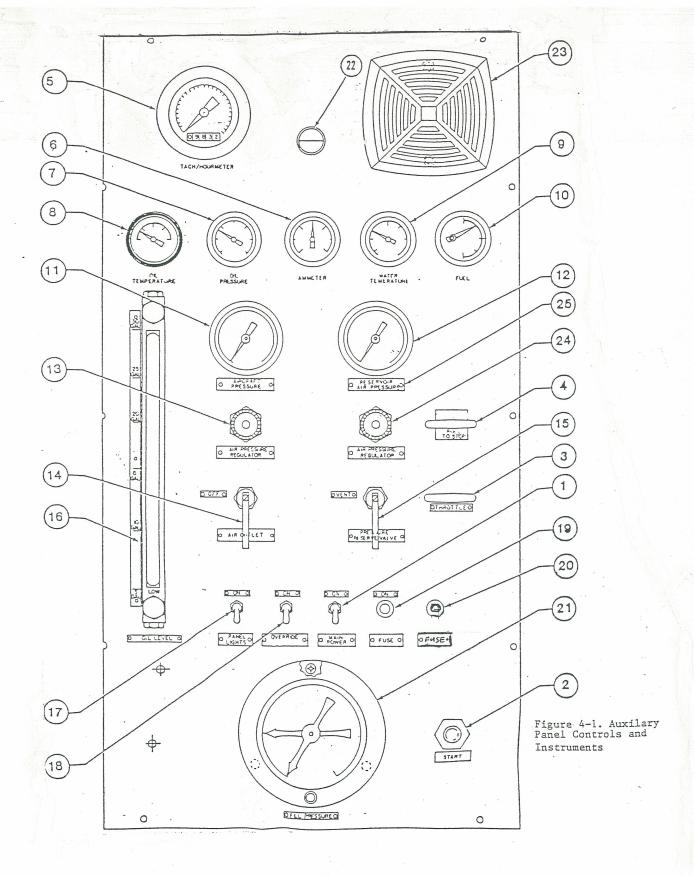


Figure 3-1. Lubrication Chart

SECTION IV

OPERATION INSTRUCTIONS


- 4-1. GENERAL. This section provides theory of operation and operational procedures for the MJ-1 Test Stand. Operational procedures outlined in this section shall not contradict established technical orders of the aircraft and aircraft components being tested.
- 4-2. THEORY OF OPERATION.
- WITH RESERVOIR SELECTOR VALVE IN "AIRCRAFT RESERVOIR" POSITION.

 The boost pump (2, Figure 6-1) draws fluid from the aircraft through the suction return port and flowmeter (1) into the boost pump. The output of the boost pump is passed through the cooler (6) and low pressure filter (7) to the suction side of the high pressure pump (13). The boost pump pressure is controlled by the boost relief valve (10). The output of the high pressure pump is passed through the high pressure check valve (34), the high pressure filter (22), the flow control valve (24), and the pressure out to the aircraft. The output pressure is controlled by the high pressure relief valve (31) and the compensator control on the high pressure pump. The output volume is regulated by the flow control valve (24) and the volume control on the high pressure pump.
- 4-4. WITH RESERVOIR SELECTOR VALVE IN "STAND RESERVOIR" POSITION. Boost pump (2) draws fluid from the Test Stand reservoir (27) and follows the same route as in paragraph 4-3. Fluid returing to the suction return port passes through the reservoir selector valve (32) into the Test Stand reservoir.
- 4-5. FILL AND BLEED SYSTEM. The fill and bleed system can be operated in either the fill or bleed mode. In the fill mode of operation, the fill pump motor (29) and pump (28) are engized by the fill

pump pushbutton (20). When the fill valve (30) is opened, the fill pump then draws fluid from the oil reservoir (27) and passes fluid through the fill pump filter (35) low pressure check valve (14) and the fill valve (30) to the hydraulic system.

In the bleed mode of operation, when the bleed valve (4) pushbutton is depressed, fluid flows from the low pressure filter (7) through the bleed valve (4) to the oil reservoir (27). The sight tube is a transparent tube that provides a means of checking the air bleed operation.

4-6. OPERATING CONTROLS AND INSTRUMENTS. All controls and instruments are indentified and described in Figures 4-1 thru 4-3 and Tables 4-1 thru 4-3.

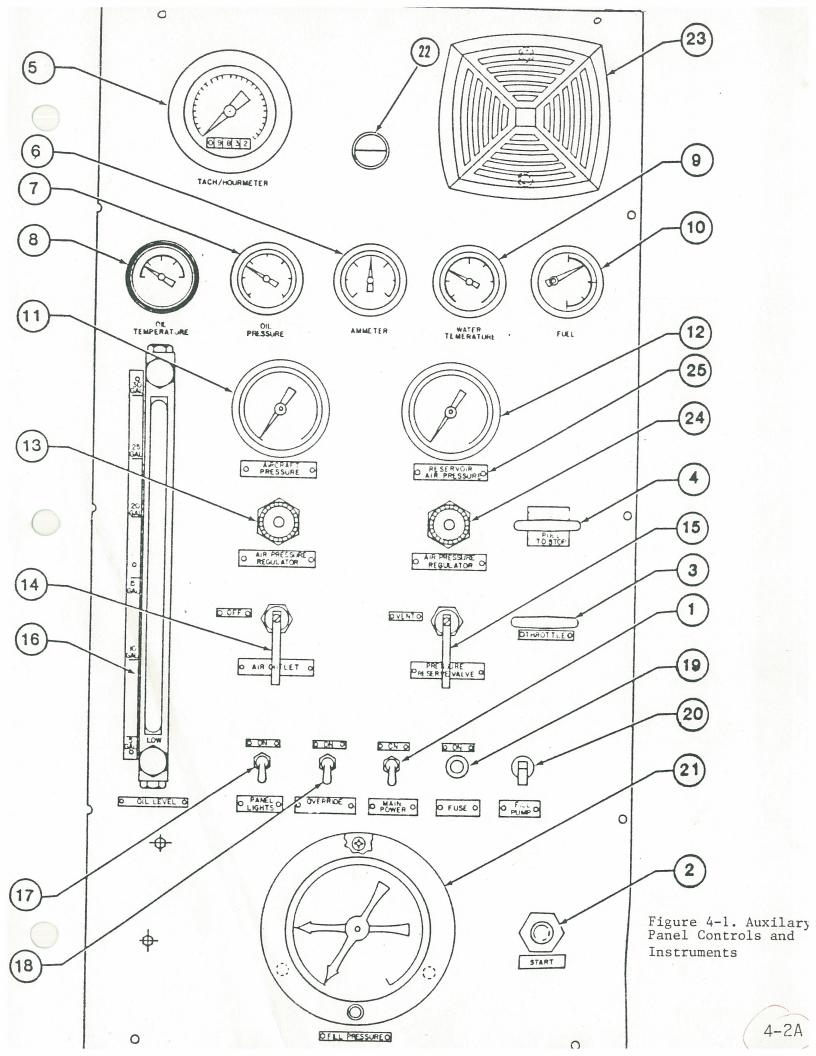


Table 4-1. Auxilary Panel Controls and Instruments

Index No	Control or	Description &	Function or
Figure	Instrument	Location	Operation
4-1			
1	MAIN POWER	Off-On toggle type	Energizes battery
	Switch	switch on panel	electrical system
2	Engine START	Push button on	Starts engine
	Button	panel	
3	THROTTLE Control	Pull handle on	Sets output speed of
		pane1	engine (Push throttle
			to decrease; pull to
			increase)
4	ENGINE SHUTDOWN	Pull handle on	Stops engine by cut-
1	Control	panel	ting off fuel supply
	30110202	panci	cing off fuel supply
5	TACHOMETER/HOUR	3-3,500 and 0-	Indicates speed of
	METER	9,999 on panel	engine in rpm and
•			indicates total hours
			of engine operation
6	AMMETER Gage	60-0-60 gage	Indicates charge and
		on panel	discharge of test
			stand batteries
7	OIL PRESSURE	0-80 gage on	Indicates engine oil
	Gage	pane1	pressure
8	OIL TEMPERATURE	0-320	Indianta
o o		0-320 gage on	Indicates engine oil
	Gage	pane1	temperature

Table 4-1. Auxilary Panel Controls and Instruments (Continued)

Index No	Control or	Description &	Function or
Figure 4-1	Instrument	Location	Operation
9	WATER TEMPERATURE	0-265 gage on	Indicates temperature
	Gage	panel	of water in engine coolant system
10	FUEL gage	0, 1/2, 4/4,	Indicates amount of
		full on panel	fuel in fuel tank
	AIRCRAFT AIR	0-160 psig gage	Indicates air pressure
	PRESSURE gage	on panel	at aircraft reservoir
12	RESERVOIR AIR	0-160 psig gage	Indicates air pressure
	PRESSURE gage	on panel	in Test Stand reservoir
13	AIR PRESSURE	Knob adjustment	Adjusts air pressure
I	REGULATOR	on panel	output to aircraft reservoir
			reservoir
	AIR OUTLET	Handle on panel	Air ON or OFF to
	Selector Valve		aircraft reservoir
	PRESSURE RESERVOIR	Handle on panel	Selects air pressure
	VALVE (Vent)		to pressurize stand reservoir or vents
			air to atmosphere
16 F	RESERVOIR LEVEL	0 to 30 gal on	Indicates level
	Indicator	panel	(amount) of fluid in
			Test Stand Reservoir.
17 F	PANEL LIGHTS ON	Off-On toggle type	Turns panel illuminat-
	Switch	switch	ing lights on and off

Table 4-1. Auxilary Panel Controls and Instruments (Continued)

Index No Figure	Control or Instrument	Description & Location	Function or Operation
4-1			
18	Overide	Switch on panel	Horn disable
19	CIRCUIT BREAKER	10 amps	Protects aux panel circuits
20	CB, FILL PUMP	Off-On toggle switch on panel	Protects fill pump motor (must be on to fill pump)
21	FILL SYSTEM gage	Duplex 0-200 psig on panel	Indicates pressure on both sides of fill system filter simultaneously. Difference indicates pressure drop across filter.
22	Panel Light	One clear incandescent	Illuminate control
23	WARNING HORN	On panel	Audio warning of mal- function
24	AIR PRESSURE REGULATOR	Knob adjustment on panel	Adjusts air pressure to reservoir

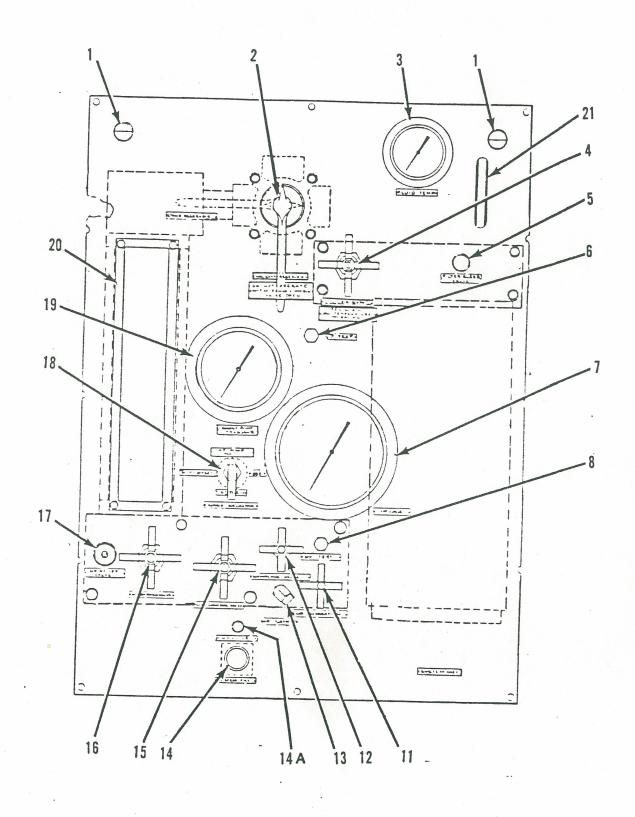


Figure 4-2. Control Panel Controls and Instruments

Table 4-2. Hydraulic Control Panel and Instruments

Index No	Control or	Description &	Function or
Figure	Instrument	Location	Operation
4-2			
1	Donal Links	m1	
1	Panel Lights	Two clear incan-	Illuminate control
•		denscent lamps	panel
		across top of panel	
2	Reservoir Selector	Handle at top of	Selects Test Stand on
	valve	control panel	Aircraft reservoir
3	Fluid Temperature	200 +- 2000	T-11
5		-20° to 200°F temp-	Indicates fluid temp-
	gage	erature indicator	erature at high
		on panel	pressure pump inlet.
4	COOLER BYPASS	Throttling Valve	Allows fluid to by-
		on Panel	pass oil cooler, to
			allow fluid to warm
			up during cold water
			operation.
5	FILTER BLEED	Chring loaded puch	Planda ata ta analan
	Valve	Spring loaded push- button valve	Bleeds air in cooler
	Valve	buccon varve	and filter. Bleed
			flow is visible at
			top in sight glass.
6	LP TEST	Test connection on	External calibration
		panel	of low pressure gage.
7	HP Gage	0 - 6,000 psig	Indiantes austres
•	Output Pressure	located on panel	Indicates systems
	orchar Treppare	rocated on patier	pressure of fluid at Stand outlets.
			stand outlets.
8	HP TEST	Test connection	External calibration
		on panel	of high pressure gage

Table 4-2. Hydraulic Control Panel and Instruments - Continued

Index No	Control or	Description &	Function or
Figure	Instrument	Location	Operation
4-2			
9	NOT USED		
	·		
10	NOT USED		
11	HP GAGE SHUTOFF	Needle type on	Isolates fluid pressu
	valve	panel	gage (7) from system
			outlets for positive
			reading and external
			calibration.
12	Fluid SAMPLING	Needle valve on	Permit taking sample
	VALVE	pane1	of pressurized fluid
			at output if desired.
13	HP SAMPLE	Port on Panel	Allows taking of fluid
			samples.
14	SYSTEM FILL	Valve on panel	Permits filling of
	Valve	· · · · · · · · · · · · · · · · · · ·	system from reservoir.
14A	HP Filter	Red lamp on panel	Lights in event of
	Lamp		high differential
			pressure accross high
			pressure filter.
15	FLOW CONTROL	Plug type throttl-	Control flow of fluid
	Valve	ing valve on main	
		control	
16	HP BY PASS	Plug type throttl-	Bypasses fluid from
	Valve	ing valve on main	pressure outlet to
		control panel	suction return line

Table 4-2. Hydraulic Control Panel and Instruments - Continued

Index No	Control or	Description &	Function or
Figure	Instrument	Location	Operation
17	HP RELIEF VALVE	Adjustable pilot-	Selects pressure at
. 1		operated type with	which high pressure
		lock nut on panel	fluid is bypassed to
			suction return line.
18	GAGE SELECTOR	4 way selector	Selects pressure
	Valve	valve on panel	reading at boost
			pump outlet, HP pump
			inlet, suction return
			line (boost pump in-
			let) and OFF (used
			for calibration).
19	BOOST PUMP	Compound gage;	Indicates pressure at
	PRESSURE Gage	0-30 in hg vacum	point selected by
		0-300 psig on panel	pressure selector
• • • • • • • • • • • • • • • • • • •			valve (18).
20	Flowmeter	Tubular type; 0-35	Indicates the volume
		gpm capacity; panel	of fluid returning to
			the system(s) circuit.
			,
21	Filter Bleed	Tubular type;	Indicates bleed oil
	Sight Tube	on Panel	flow past filter
	•		bleed valve

Table 4-3. Miscellaneous Controls

Index No	Control or	Description &	Function or
Figure	Instrument	Location	Operation
4-3			
1	VOLUME CONTROL	Manual control on	Regulates maximum
		high pressure pump	pressure fluid
*		on lower sub-panel	from 0-35 gpm.
2	PRESSURE CONTROL	Screw shaft adjustment	Maintains contant
	(Compensator)	on high pressure pump	pressure in hydraulic
		on low sub-panel.	system as delivered
			by pump
3	HAND BRAKE	Hand lever operated	Operates brake on
		brake system, at	rear wheels, when
		front lower right	stand in no in use
		hand corner.	
4	Air Connection	To aircraft, behind	Provides air to
		auxiliary panel	pressuring aircraft
•			reservoir
5	Hydraulic	To aircraft, behind	To provide return port
	Connector	main control panels	from aircraft hydraul-
			ic system under test-
			System No. 1.
6	Hydraulic	To aircraft, behind	To provide pressure
	Connector	control panel	port to aircraft
			hydraulic system under
			test-System No. 1.

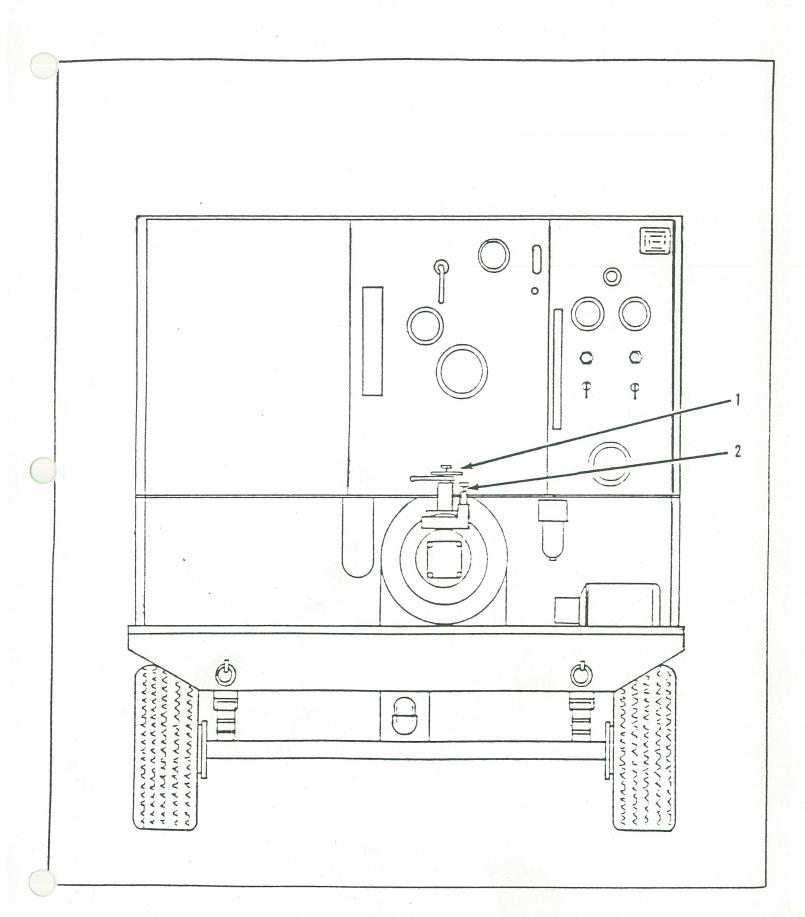


Figure 4-3. Miscellaneous Controls (Sheet 1 of 2)

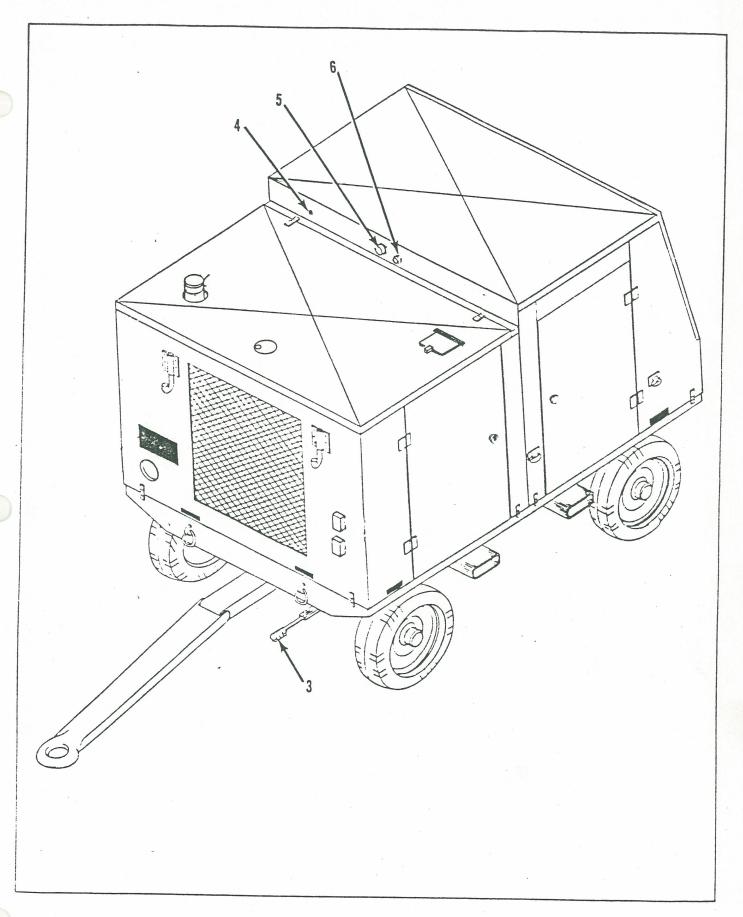


Figure 4-3. Miscellaneous Controls (Sheet 2 of 2)

- 4-7. OPERATING INSTRUCTIONS.
- 4-8. PRELIMINARY PROCEDURES. Make the following checks before operating the Test Stand.
 - a. Housing doors shall be closed. Open control panel door.
 - b. Ensure fuel tank contains adequate fuel supply.
- c. Check hydraulic reservoir fluid level. For proper operation of Test Stand maintain hydraulic fluid level in reservoir 3/4 full minimum.
- 4-9. PRE-OPERATION CONTROL SETTING. Place the controls listed below in the positions indicated.

CAUTTON

With pressure and return hoses disconnected from aircraft RESERVOIR SELECTOR VALVE must be in STAND RESERVOIR position prior to operation or unit will be damaged. When operation through run around block RESERVOIR SELECTOR VALVE must be in STAND RESERVOIR position or damage to unit will result.

	Control	Position	Method
a.	H.P. GAGE SHUT-OFF	1/4 turn from full	CW to close then
	valve (11,Figure 4-2)	closed	CCW 1/4 turn.
b.	GAGE SELECTOR valve (18, Figure 4-2)	HP pump inlet	Select
c.	PRESSURE CONTROL (2, Figure 4-3)	Opened to lowest pressure setting	Rotate CCW

	Control	Position	Method
d.	FLOW CONTROL Valve (15, Figure 4-2)	Closed	Rotate CCW
e.	HP RELIEF VALVE (17, Figure 4-2)	Lowest pressure	Rotate CCW
f.	VOLUME CONTROL (1, Figure 4-3)	To be set to	Rotate CCW
g•	HP BYPASS Valve (16, Figure 4-2)	Open	Rotate CW
h.	RESERVOIR SELECTOR Valve (2, Figure 4-2)	"Stand Reservoir"	Select
i.	Engine Shutdown Control	Fully In	Select
j.	Engine Throttle Control	Full out and then push in to 1/4 open position	Select

- 4-10. PRE-OPERATION FILL AND BLEED PROCEDURE. With controls set in the positions specified in paragraph 4-9, proceed as follows:
 - a. Remove the hoses from the top of Test Stand.
- b. Check that the connector fittings on the hoses and outlet and return fittings on the top of the Test Stand are clean. If the fittings are dirty, wash the fittings with solvent, Federal Specification P-D-680 Type II.
- c. Connect hoses to corresponding outlet and return fittings. Connect high pressure hose to low pressure hose using run around connections at front of stand.

- d. Set reservoir selector valve (2) to AIRCRAFT RESERVOIR position to perform fill and bleed procedures.
 - e. Turn on MAIN POWER Switch (1, Figure 4-1).
 - f. Push FILL PUMP ON push button (14, Figure 4-2)
- g. Press and hold FILTER BLEED valve (5) until system is free of air (bubbles) as shown on sight gage.
- h. Release FILL PUMP ON pushbutton (14) when L.P. Gage indicates approximately 80 psi.
- i. When the hydraulic systems have been prefilled, check OIL LEVEL Indicator (16, Figure 4-1). Refill the oil reservoir, if necessary, with hydraulic oil, Military Secification MIL-H-5606.
- 4-11. DIESEL ENGINE STARTING PROCEDURE.

CAUTION

Do not impose a load of high ressure pumps when starting engine. HP BYPASS VALVE (16, Figure 4-2) shall be open at starting.

- a. Preform prelimiary procedures (paragraph 4-8, 4-9, and 4-10).
- b. Push START Switch (2, Figure 4-1) until engine starts.

CAUTION

Do not press start switch for periods longer then 15 sconds or damage to engine or starter may result. c. After engine starts, observe oil pressure gage. If pressure in not indicated in 10 seconds, pull out ENGINE SHUTDOWN CONTROL (4) to stop engine and set MAIN POWER switch to OFF. Refer to Section V for trouble-shooting procedures.

CAUTION

Do no impose load on engine at speeds less than 1500 rpm. Damage to engine may result.

- d. After proper engine startup, allow engine to warm up. Observe TACHOMETER/HOURMETER (5), and adjust THROTTLE control (3) to set engine speed to 1000 rpm.
 - e. After warmup adjust THROTTLE control (3) to 2500 rpm.

NOTE

If warning horn sounds continously, shut down engine by pulling ENGINE SHUT-DOWN control (4) and refer to Section V for troubleshooting procedure.

With engine running perform fill and bleed operation.

f. Press FILTER BLEED valve (5, Figure 4-2) to free system of trapped air.

NOTE

Any fluid bled from systems must be replaced using fill pump and fill valve. Monitor system pressure on compound gage (21, Figure 4-1) with gage selector valve (18, Figure 4-2)

in HP PUMP INLET position. Pressure shall not exceed 140 psi.

4-12. ADJUSTING VOLUME AND PRESSURE SETTINGS.

CAUTION

Before hydraulic fluid passes through high pressurefilters, warm fluid to 80 degrees F minimum, per FLUID TEMP gage (3), by circulating fluid within the Test Stand. HP RELIEF VALVE (17) shall be partially closed (do not exceed 2500 psi) per HP GAGE (7) and HP BYPASS VALVE (16) shall be closed. When the fluid temperature reaches 80 degrees F, flow fluid through high pressure filters by partially opening HP BYPASS VALVE (16) until filter housing is warmed. At fluid temperatures below 80 degrees F the high viscosity of the hydraulic fluid will cause excessive differential pressure which actuate the differential pressure switch and may rupture the primary filter elements. During this warm-up operation the HP FILTER LAMP (14A) may come on. Lamp should go out when fluid warms up. If lamp does not go out after 5 minutes, replace filter element.

a. Perform preliminary procedures (paragraphs 4-8, 4-9, 4-10, and 4-11).

b. Open FLOW CONTROL valve (15, Figure 4-2).

Slowly close HP BYPASS valve (16).

- d. Repeat paragraph 4-10f until entire system is free of air.
- e. Observe output pressure HP GAGE (7), for reading of 100 to 500 psig.
- f. Check condition of flow in flowmeter (20). If air is still present, bleed system per preceeding step d.
- g. Adjust VOLUME CONTROL valve (1, Figure 4-3) to desired rate of flow.

NOTE

Flowmeter readings are correct at fluid temperature or 100 degrees F. For operating temperatures other than 100 degrees F refer to Figure 4-4 to obtain corrected flow.

- h. Slowly close FLOW CONTROL valve (15, Figure 4-2) to check or reset HP RELIEF VALVE (17, Figure 4-2) and/or set PRESSURE CONTROL (2, Figure 4-3).
- i. Reset HP RELIEF valve (17, Figure 4-2) setting to 200/250 psig above desired PRESSURE CONTROL setting.
- j. Adjust PRESSURE CONTROL (2, Figure 4-3) setting to desired value. Readjust flow if necessary.
- 4-13. STOPPING THE TEST STAND.
 - a. Reduce VOLUME CONTROL setting (1, Figure 4-3) to minimum.
 - b. Open HP BYPASS VALVE, (16, Figure 4-2).
 - c. Close FLOW CONTROL valve (15).

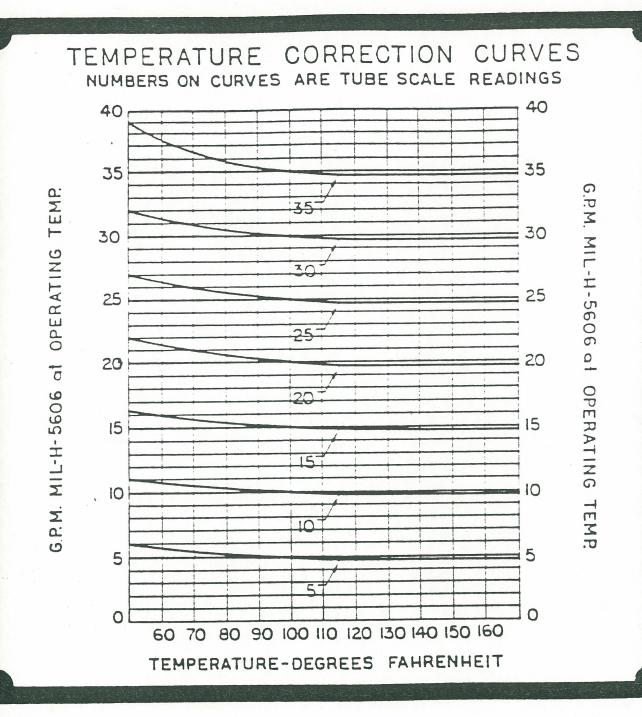


Figure 4-4. Temperature Correction Curve

- d. Position RESERVOIR SELECTOR valve (2) to Test Stand reservoir.
- e. Adjust THROTTLE control for engine speed of 1000 rpm.
- f. Allow engine to idle for 3 minutes.
- g. Pull out engine SHUTDOWN control.
- h. Disconnect hoses and place on hose retainer hooks. Cap all external connections. Do not disconnect hoses from Test Stand, unless necessary.
 - i. Place MAIN POWER SWITCH (1, Figure 4-1) in OFF position.
- 4-14. EMERGENCY STOP. Perform emergency stop procedures as follows:
 - a. Open HP BYPASS valve (16, Figure 4-2).
 - b. Pull out engine SHUTDOWN control.
 - c. Place MAIN POWER Switch in OFF position.
- 4-15. FLUID SAMPLING. Needle-valve type sampling valves are provided in each system to aid in taking samples for fluid contamination analysis. The valves are located on the control panel. To take fluid samples, operate the unit with the HP BYPASS valve (16, Figure 4-2) open and open sample valve (12), and tube sample of fluid from HP SAMPLING port (13).
- 4-16. AIRCRAFT FILL AND TEST PROCEDURES.
- 4-17. POSITIONING AND CONNECTING THE TEST STAND TO AIRCRAFT. Position and connect the Test Stand for aircraft test as follows:
- a. Move the Test Stand to the operating site using a suitable towing vehicle.

- b. Position the Test Stand with respect to the aircraft so that the hoses can be connected between the aircraft and the Test Stand without sharp bends or kinks.
- c. Set the brakes by pulling up on the hand brake lever. (3, Figure 4-3).
- d. Raise the tow bar and secure it is its vertical position using the tow bar latch.
 - e. Remove the hoses from the front of the Test Stand.
- f. Check that the connector fittings on the hoses and the outlet and return fittings on the top of the Test Stand are clean. If the fittings are dirty, wash the fittings with solvent, Federal Specification P-D-680, Type II.
- g. Make the necessary hose connections between the aircraft and the aircraft and the outlet and return fittings on the top of the Test Stand. Accessory fittings and adapters for use in making aircraft connections are supplied with the Test Stand.
- 4-18. FILLING THE AIRCRAFT RESERVOIR. The following procedure can be used to fill an aircraft reservoir or to replace any fluid lost when connecting the hoses. To completely fill and bleed an aircraft system that has been drained, refer to paragraph 4-20.

NOTE

Refer to the applicable aircraft publication for proper fill procedures.

- a. Turn the applicable PRESSURE SELECTOR valve (18, Figure 4-2) to the BOOST OUTLET position.
 - b. Position Reservoir Selector valve (2) to AIRCRAFT RESERVOIR.

- c. Start fill pump, by pushing the pushbutton (14).
- d. Fill the aircraft reservoir and leave the system fill valve opened until the filling operation is complete.

NOTE

The fill system output pressure can by monitored by observing the BOOST PUMP PRESSURE gage (19).

e. Bleed the air from the system by pressing the FILTER BLEED valve (5). Observe the sight tube and hold the FILTER BLEED valve depressed until clear fluid flows through the sight tube with no evidence of air bubbles.

WARNING

Always set PRESSURE RESERVOIR VALVE (15, Figure 4-1) to VENT prior to removing reservoir fill cap. Failure to comply may result in injury to personnel.

NOTE

Any fluid bled from systems must be replaced using fill pump and appropriate SYSTEM FILL valve. Monitor system pressure on compound FILL PRESSURE gage (21, Figure 4-1) with GAGE SELECTOR VALVE (18, Figure 4-2) in HP PUMP INLET position. Pressure shall not exceed 140 psi.

f. After the bleeding operation is complete, check the Test Stand fluid level. Refill the Test Stand reservoir by removing reservoir fill cap.

4-19. AIRCRAFT FILL/BLEED PROCEDURE. If the aircraft system has been drained, fill and air bleed the aircraft system as follows:

CAUTION

Do not exceed the rated gpm of the individual system aircraft pumps.

Refer to applicable aircraft publication for flow capacities of the respective systems.

NOTE

Two persons are required for this operation: one to operate the Test Stand and one the aircraft to observe the filling operation.

- a. perform all procedures described in paragraph 4-6 through 4-10
- b. Open FLOW CONTROL valve (15, Figure 4-2).
- c. Slowly close HP BYPASS valve (16).
- d. with fill system operating press FILTER BLEED VALVE (5) while continually cycling the aircraft controls until all the air is bled from the aircraft system.

NOTE

When the pressure indicated by the BOOST PUMP PRESSURE gage (19) drops below 45 psig, release the filter bleed valve and allow pressure to build up to at least 50 psig before again pressing the FILTER BLEED valve.

- e. Slowly increase the volume output of the Test Stand system and repeat the air bleed operation at one-quarter turn increments of the pump volume control until the rated flow of the aircraft system has been reached.
- 4-20. AIRCRAFT TESTING PROCEDURE. To test an aircraft hydraulic system, proceed as follows:

CAUTION

If the warning horn sounds, refer to Section V for trouble shooting before attempting to operate the Test Stand for testing and aircraft system.

Do not let BOOST OUTLET PRESSURE fall below 50 psig when operating Test Stand in open loop (Test Stand reservoir).

- a. Perform all procedures described in paragraph 4-7 through 4-11. If the aircraft system has been drained, fill and air bleed the aircraft system as described in paragraph 4-19.
 - b. Open the FLOW CONTROL valve (15, Figure 4-2).
 - c. Slowly close the HP BYPASS valve (16).
- d. Position Reservoir Selector valve (2) as required per the applicable aircraft publication.
- e. Proceed with tests in accordance with the applicable aircraft publication.
- f. System output pressure is indicated by the output pressure HP gage (7) for each system. To vary the output pressure, refer to paragraph 4-9.

- g. System volume is indicated by the flowmeter (20). To vary the output volume, refer to paragraph 4-12.
- h. Fluid temperature is indicated by the FLUID TEMPERATURE gage (3).
- i. To check the return pressure from the aircraft, set the PRESSURE SELECTOR valve (18) to the RETURN position.
 - j. Shut down Test Stand after test (paragraph 4-13).
- 4-21. RESERVOIR PRESSURIZING PROCEDURE. The following procedure can be used to pressurize either the Stand or Aircraft reservoir when required by aircraft T.O.
- a. The AIR COMPRESSOR in part of the diesel engine and will self-engage to maintain a pressure of 85-100 psi.
 - b. Close AIR OUTLET selector valve (14).
 - c. (Deleted)
- d. Air pressure at air outlet is controlled by AIR PRESSURE REGULATOR (13) and read on AIRCRAFT AIR PRESSURE gage (11).
- e. To pressurize reservoir, set PRESSURE RESERVOIR VALVE (15) to the PRESSURIZE position, adjust AIR PRESSURE REGULATOR (24) to the required pressure on reservoir air pressure gage (12).
- f. If pressurization of reservoir is not required. PRESSURE RESERVOIR VALVE (15) should be place in VENT position and AIR PRESSURE REGULATOR (24) backed out to it lowest pressure position.

- a. Make certain all hydraulic pressure is completely relieved before removing hydraulic system components.
- b. Do not attempt to remove or repair any electrical component unless input power is disconnected (battery cable)
- c. If it is necessary to remove system lines connected to hydraulic components, loosen fitting at end of each line, and remove attaching parts securing component to structure. Do not bend system lines on removal, as thread damage or misalignment may result. Cap or plug open lines or ports with protective closures, Military Sepcification MIL-C-5501, or equivalent.
- d. When removing electrical components, disconnect electrical leads from terminals and tag each for ease of identification during reassembly.
- 5-3. PREVENTATIVE MAINTENANCE. Maintenance is generally limited to cleaning, service adjustments, and minor repair or replacement of parts and components that require attention through normal service use. Generally, instructions for minor repair or replacement consist essentially of carefully noting method of installation when removing defective parts, performing the necessary repair or adjustment, and installing parts in reverse order of removal. Change oil and air filters every six months.

5-4. ENGINE MAINTENANCE.

- a. General Engine Maintenance. For additional information consult Operators Manual in Section 8.
 - (1) Check fuel level. Add fuel as required. If fuel level is satisfactory, check low fuel level warning switch. Replace if defective.
 - (2) Check engine coolant temperature gage. Normal engine

SECTION V

MAINTENANCE INSTRUCTIONS

- 5-1. GENERAL. Maintenance of the Test Stand consist of periodic inspection, cleaning, service adjustment, minor repairs or replacement of parts and components, and lubrication of main motor. The procedures described in this section must be performed regularly and thoroughly, even though Test Stand is operating satisfactorily. Through proper inspection, maintenance, and lubrication, equipment that is not in continuous use is kept ready for operation when necessary, and the Test Stand is maintained at peak performance levels for the maximum life of the equipment.
- 5-2. COMPONENT REMOVAL. When it is necessary to remove any component of the Test Stand, observe the following precautions and general practices:

WARNING

Release all system pressures prior to removal of components from hydraulic systems, and ensure that the input power to the Test Stand is disconnected to avoid possible injury to personnel.

CAUTION

Do not use adjustable jaw-type wrenches on hydraulic tube fittings. Slippage may result in damage to hexagonal fitting surfaces.

coolant temperature is 160-185°F. Consult Table 5-1 if limits are exceeded.

- (3) Check engine oil pressure gage. Minimum oil pressure should be 18 psi at 1200 rpm. The oil pressure at normal operating speed should be 40-60 psi. Consult Table 5-1 if limits are exceeded.
- 5-5. CHECKING CRANKCASE OIL LEVEL. To check the crankcase oil level proceed as follows:
 - a. Check oil level on dipstick.
- b. Add lubricating oil (Table 1-2) as required to bring the oil level up to FULL mark on the dipstick.

NOTE

Do not add more oil than required to bring oil level to FULL mark.

- c. Replace dipstick. Push firmly to reseat.
- 5-6. CHANGING ENGINE LUBRICATING OIL. To change engine lubricating oil proceed as follows:
- a. Remove crankcase drain plug and drain oil into a suitable container.
 - b. Service engine oil filter in accordance with paragraph 5-7.
 - c. Install drain plug. Torque to 25 to 35 ft.-1bs.
- d. Remove filler cap on left valve cover and fill crankcase with ll quarts of MIL-L-2104 lubricating oil (Table 1-2). If engine oil filter is replaced, add 13 quarts of oil.

- e. Replace filler cap.
- f. Start engine (Section IV) and check for oil leaks around crankcase drain plug and engine oil filter.
- 5-7. Servicing Oil Filter. The oil filter (1, Figure 5-1) may be serviced as follows:
- a. With the engine stopped place a container underneath the oil filter.
- b. With a spin-on element remover tool, carefully remove element (2, Figure 5-2) and clean cover bottom (1) with a rag.
 - c. Lightly moisten new element rubber gasket with clean oil.
- d. Install element and firmly hand tighten. Do not overtighten as element may warp.
- e. When refilling crankcase allow two extra quarts of oil for oil filter.
- 5-8. SERVICING FUEL STRAINER/FUEL FILTER. The procedure for replacing the element is the same for the fuel strainer and fuel filter (2,3 Figure 5-1).
- a. With the engine stopped, place a container under the fuel strainer or fuel filter.
- b. With a spin-on element remover tool, carefully remove element (2, Figure 5-2) and clean cover bottom (1) with a clean rag.
 - c. Fill new spin on filter with clean fuel.
 - d. Lightly moisten new element rubber gasket with clean oil.
- e. Install element and firmly hand tighten. Do not overtighten as element may warp.

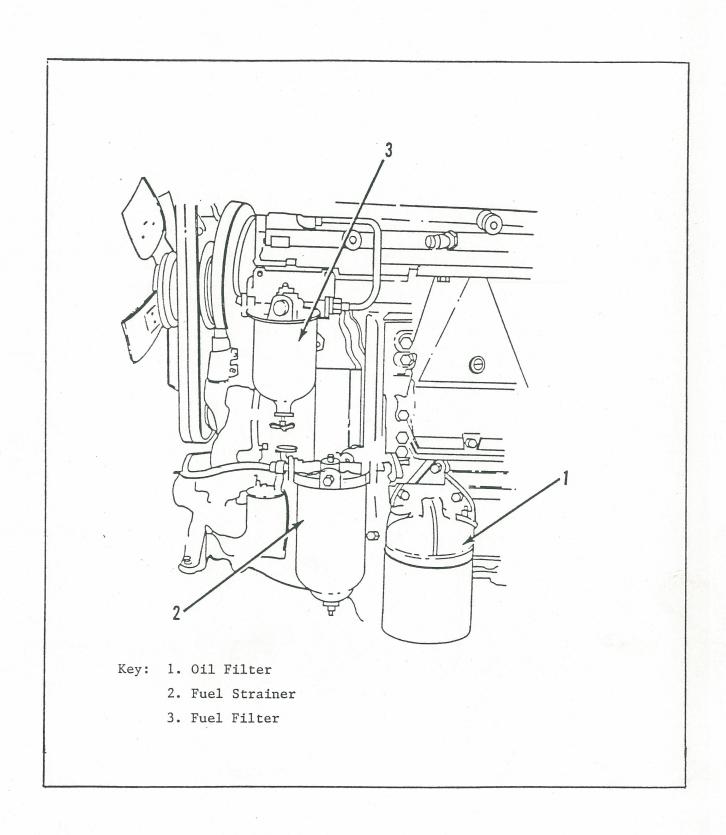


Figure 5-1. Fuel/Oil Filters

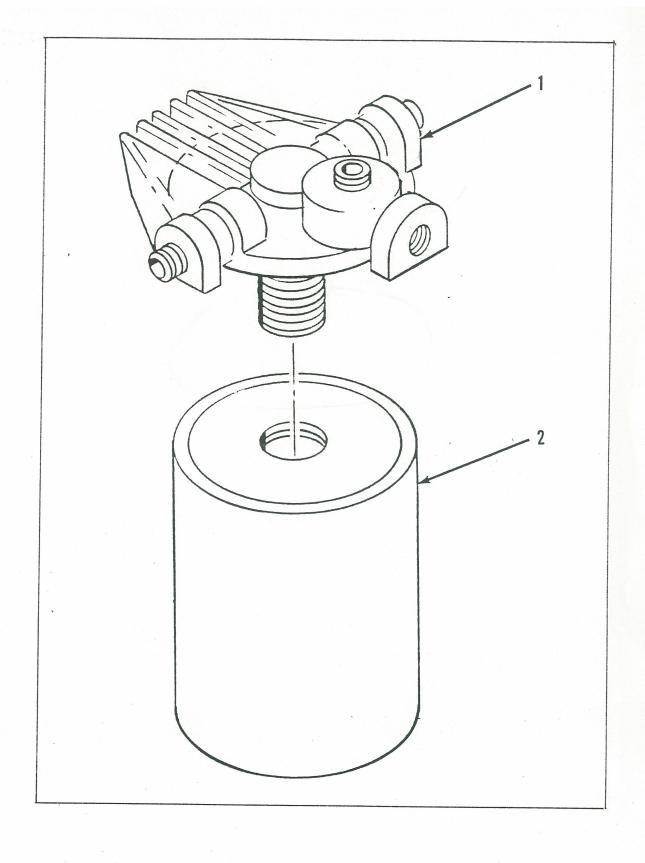


Figure 5-2. Fuel/Oil Filters (Typical)

5-9. AIR CLEANER. The air cleaner is designed to remove foreign matter from the air, pass the required volume of air for proper combustion and scavenging, and maintain efficient operation for a reasonable period of time before requiring service.

The importance of keeping dust and grit-laden air out of the engine cannot be over-emphasized, since clean air is so essential to satisfactory engine operation and long engine life. Should dust in the air supply enter the engine, it would be carried directly into the cylinders and, due to its abrasive properties, cause premature wear of the moving parts. Dirt, which is allowed to build-up in the air cleaner passages, will eventaully restrict the air supply to the engine and result in heavy carbon deposits on the valves and pistons due to incomplete combustion. The air cleaner sump must have a capacity large enough to retain the material separated from the air to permit operation for a reasonable length of time before cleaning is required.

Although the air cleaner is highly efficient, this efficiency depends upon proper maintenance and periodic servicing.

Damaged gaskets, loose hose connections or leaks in the duct work, which permit dust-laden air to completely by-pass the cleaner and enter the engine directly, will lower the efficiency of the air cleaner. If the air cleaner is not serviced periodically, the engine will not receive a sufficient amount of clean air. An air cleaner operating in severe dust will require more frequent service than an air cleaner.

5-10. OIL BATH AIR CLEANER. The oil bath air cleaner (Fig. 5-3) consists of a metal wool cleaning element supported inside a housing beneath which is contained a bath of oil. The lower portion of the housing incorporates a chamber which serves as a silencer for the incoming air to the blower.

Air drawn into the cleaner by the blower passes over the top of the oil bath, where a major portion of the dirt is trapped, then up through the metal wool where the finer particles are removed, then down the central duct to the blower.

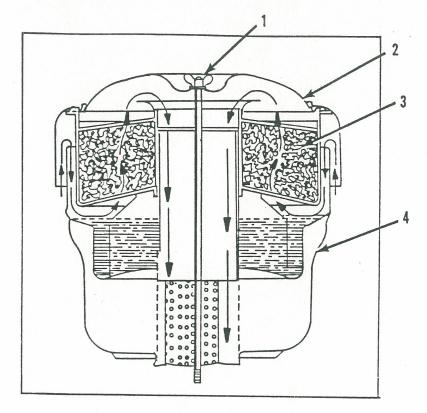


Fig. 5-3. Oil Bath-Type Air Cleaner

- a. SERVICE. Service the oil bath air cleaner as follows (see Figure 5-3).
 - (1) Loosen the wingbolt (1) and remove the cleaner from the air inlet housing. the cleaner may then be separated into three sections: the upper section (2) the metal wool element (3), and the lower section (4) containing the oil sump.
 - (2) Soak the element in fuel oil to loosen the dirt; then flush the element with clean fuel oil and allow it to drain thoroughly.
 - (3) Empty the sump and clean it with fuel oil to remove all sediment.
 - (4) Push a lint-free cloth through the center tube to remove dirt or oil from the walls.
 - (5) Clean and check all gaskets and sealing surfaces to insure air tight seals.

- (6) Refill the sump to the oil level mark ONLY, with the same grade of oil used in the engine.
- (7) Before installing the air cleaner on the engine, check the air inlet housing for dirt. If the service period has been too long, or if dust-laden air has been leaking past the air cleaner to the air inlet housing seals, the inlet will be dirty. This will serve as a good check on the servicing of the air cleaner. When installing the cleaner (and its seal) on the inlet housing, be sure the cleaner seats properly, then tighten the wingbolt securely until the cleaner is rigidly mounted.
- 5-11. Servicing Fuel Tank. Locate drain plug under fuel tank and drain off any water or sediment prior to starting engine.
- 5-12. SERVICING COOLING SYSTEM.

WARNING

Always remove radiator cap slowly and carefully to avoid a possible flash of hot coolant. Failure to comply may result in injury to personel.

- a. Coolant Level. maintain coolant level near top of radiator expansion chamber accessiable from top of test stand. Check prior to use and add clean water as required.
- b. Hoses. Inspect hoses at least once every 500 hours for signs of deterioration. Replace as needed.

WARNING

Use cleaning solvent P-D-680, Type II, in a well ventilated area. Do not inhale

solvent vapor or allow solvent to contact skin. Keep solvent away from open flame. Failure to comply may result in injury to personnel.

- c. Radiator. Inspect exterior of radiator at least once every week. Clean with solvent P-D-680, Type II, and dry with clean, dry compressed air at 5-15 psi maximum. it may be necessary to clean the radiator more frequently, if the test stand is being operated in an extremely dusty of dirty area. Clean the cooling system in accordance with paragraph 5-13.
- 5-13. CLEANING COOLING SYSTEM. The cooling system should be flushed and refilled every six months with fresh coolant. Scale and/or rust may be removed with a cleaner and the system reverse-flushed as soon as any scale or rust is detected.
- 5-14. FLUSHING THE COOLING SYSTEM. To flush the cooling system and renew the coolant, proceed as follows:

WARNING

Always remove the radiator cap slowly and carefully to avoid a possible flash of hot coolant. Failure to comply may result in injury to personel.

- a. Remove Radiator Cap at Expansion Chamber. Open coolant drain-cock located on engine oil cooler. Drain coolant into a suitable container.
 - b. Close drain-cock and refill coolant system with clean water.

CAUTION

If engine is hot, refill slowly to prevent cooling and distortion of engine casting.

- c. Operate engine for fifteen minutes to circulate water thoroughly.
 - d. Stop engine and drain water completely.
 - e. Close drain-cock and refill system with a 50-50 mixture.
- f. Install radiator cap and operate engine until normal operating temperature is reached.
- g. Slowly and carefully remove radiator cap and loosen vent plugs in thermostat housing. Add coolant solution to radiator to bring the coolant level to within two inches of the radiator filler neck. Tighten vent plugs in thermostat housing when all air is expelled.
- h. Install radiator cap and operate engine for 30 minutes repeat steps (g) and (h).
- 5-15. REMOVING SCALE AND/OR RUST FROM THE COOLING SYSTEM. Rust and scale are removed from the cooling system by first cleaning system with a descaling solvent and then reverse-flushing the radiator and engine block(if equipment available). To use descaling solvent, proceed as follows:
- a. Open coolant drain-cock and drain coolent into a suitable container.
- b. Close coolant drain-cock and fill cooling system with clean water.
- c. Use descaling solvent in accordance with manufacturer's instructions.
 - d. Re-fill system with a 50-50 mix of anti-freeze and water.
- 5-16. REVERSE-FLUSHING THE COOLING SYSTEM. If possible, the engine and radiator should be reverse-flushed separately to prevent dirt and

scale deposits from clogging the radiator or being forced through te water pump. After the radiator and engine have been thoroughly cleaned proceed as follows:

- a. Insure radiator and engine are drained.
- b. Reverse-flush the radiator by first removing radiator inlet and outlet hoses. Install radiator cap.
- c. Reverse-flush the radiator by attaching a hose to the radiator inlet to direct water away from engine.
 - d. Attach a hose and flushing gun to the radiator outlet.
 - e. Connect a water hose and compressed air hose to flushing gun.

CAUTION

Apply air gradually, Do not exceed 30 psi air pressure. To great a pressure may rupture a radiator tube.

- f. Turn on water and, when radiator is full, turn on air in short blasts, allowing the radiator to fill between air blasts.
- g. Continue flushing until only clean water is expelled from the radiator. Remove flushing gun and hoses and allow radiator to drain.
 - h. Reverse-flush the engine by first removing thermostats.
 - i. Remove hose from water inlet fitting.
- j. Attach a hose to the water inlet of the cylinder block to drain water away from engine.

k. Attach a hose and flushing gun to water outlet at the top of the cylinder block.

CAUTION

Excessive pressure may damage components.

Do not exceed 30 psi.

- 1. Connect a water hose and compressed air hose to flushing gun.
- m. Turn on water and, when water jackets are filled, turn on air in shorts blasts, alowing the engine to fill with water between air blasts.
- n. continue flushing until only clear water is expelled from the engine block. Remove flushing gun and hoses and allow block to drain.
 - o. Reinstall thermostats.
 - p. Install new radiator inlet and outlet hoses.
- q. Close drain-cock and fill cooling system with a 50-50 mixture of clean water and anti-freeze.
- r. Install radiator cap and operate engine (Section IV) until normal operating temperature is reached.
- s. Slowly and carefully remove radiator cap. Loosen vent plugs in thermostat housing and add coolant solution to bring coolant level to within two inches of the radiator filler neck. Tighten vent plugs when all air is expelled.
- t. Install radiator cap and operate engine for 30 minutes. Repeat step (i).

5-17. BATTERY MAINTENANCE. Engine batteries are serviced as follows:

CAUTION

When handling batteries, use face shield or goggles, rubber gloves and apron.

a. Maintain electrolyte level approximately three-eights inch over plates. Check level daily and add distilled water as necessary.

CAUTION

To prevent battery damage, keep soda solution out of cells.

- b. Keep top of battery clean. When necessary, wash with a baking soda solution and rinse with fresh water.
- c. Inspect cables, clamps, and holddown bracket every 100 hours. Clean and apply to coat of grease when needed. Replace corroded or damaged parts.
- d. Check condition of battery every 300 hours with a hydrometer. Specific gravity of a fully charged battery should be 1.275 to 1.285. Charge battery if specific gravity goes below 1.150. Check electrical system if battery becomes discharged repeatedly.
- 5-18. SERVICING STARTING MOTOR. Service starter motor as follows:
 - a. Remove pipe plugs.
- b. Lubricate the starting motor with five or six drops of engine oil at each oiling hole.
 - c. Install pipe plug.

5-19. Servicing Drive Belts.

CAUTION

Too much tension on belt may damage bearings of the driven part. A loose belt will slip and wear out belt.

NOTE

When installing or adjusting drive belt, ensure that bolt at the adjusting pivot point is properly tightened.

a. Adjust belt tension. Adjust belt tension so that a firm push with the thumb, at a point midway between the two pulleys, will press the belt one-half to three-quarters inch.

Belt(s)	Tension (lbs/belt)
Alternator drive	40-50
Water pump	40-50

NOTE

Replace all belts in a matched set when one is worn. Do not substitute a single belt of similar in a matched set.

- b. Run engine for 15 minutes and re-tension belts.
- 5-20. TROUBLESHOOTING. Table 5-1 provides a quick check list of possible trouble, which may be encountered in the operation of the Test Stand, their probable cause and suggested remedy.

Table 5-1. Troubleshooting

TROUBLE	PROBABLE CAUSE	REMEDY
Fluid temperature too high	Heat exchanger clogged Defective pump compensator	Flush and clean Replace
Reservoir level indicator does not indicate	Hydraulic lines plugged or damaged Blocked tubing connection Reservoir empty	Replace Clean or replace Fill
Pump fails to de- liver sufficient volume	Insufficient fluid supply (Test stand will shut down)	Fill Reservoir; fill systems
	Air in suction line	Tighten connections, bleed lines
	Dirty, clogged boost pressure filter	Clean or replace elements
	Pump volume control set too low	Adjust
	Low boost pump pressure (Test Stand will shut-down)	Check boost pump pressure
	Clogged low pressure and high pressure filters	Clean and replace
	Pump Compensator not set properly	Reset

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY
Pump fails to de- liver sufficient pressure	High pressure relief valve set too low (dumping before compensator setting)	Reset
	Defective pressure gauge	Inspect and replace, if necessary
Noisy operation	Pump cavitating; insu- fficient fluid supply low boost pressure, pump case not filled with fluid	Check for adeguate fluid supply boost pressure check boost pressure filter; fill pump case with pressure filter, fill system filters; use clean, filtered fluid
	Air in system Defective boost pump if necessary	Fill and bleed Check and replace.
	Defective check valve in high pressure line	Inspect and replace, if necessary
	Pressure outlet closed or flow control valve and bypass valves closed	Open bypass valve
	Chattering high pressure relief valve	Remove valve assembly clean and replace worn or defective parts
	Defective pump compen- sator	Repair or replace
Excessive back- pressure	Check valve fail(closed)	Repair or replace

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY
Control circuit inoperative	Control circuit breakers off	Reset circuit breakers
	Power on switch off	Switch to on
	Faulty control circuit transformer	Test and replace, if necessary
	Defective relays	Test and replace, if necessary
Indicating light fails to flow on	Defective lamps	Test and replace
"press to test"	Defective lamps	Test and replace
	Defective lamps	Test, repair/replace
Hourmeter does	Deffective wire leads	Repair or replace
Defective instrument		Replace
Fill pump motor fails to start	Control power off	Connect power lines properly. Depress push button
	Circuit breaker open	Close circuit breaker
Fill pump does	Pump suction is dry,	Instroduce fluid to pump inlet
	Pump worn or damaged	Repair or replace
	Air leaks insuction line	Tighten all connections
	Motor rotation wrong	Check rotation and correct wiring for proper rotation

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY
No power to high pressure pumps	Defective gearbox	Check gearbox, replace if defective.
	Defective high pressure pumps	Check high pressure pumps, repair/replace if defective
Engine will not start	Engine shutdown handle	Ensure shutdown handle is fully in.
	Defective starter	Replace.
	Low battery charge	Test and recharge battery. Replace battery if it will not hold a charge.
	Battery connection dirty or loose	Clean battery cable terminals and battery posts. Tighten.
	Starter connection dirty or loose	Clean starter connections and tighten.
	Defective starter solenoid	Replace starter solenoid.
	Insufficient fuel	Fill tank above suction line and bleed system if necessary in accordance with engine technical order.
	Air leaks	Tighten joints and replace gaskets if necessary at fuel leakage points. Bleed system if necessary in accordance with engine technical order.

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY
		TOMAND I
Engine will not	Dirty fuel filters	Check filters and replace elements
start-continued		if necessary in accordance with
		engine technical order.
	Starter worn	Inspect starter commutator and
		brushes for wear. Replace brushes
		and overhaul starter if commutator
		is damaged. See engine technical
		order.
	Improper grade of oil	Drain crankcase and refer to
	Improper grade or our	engine technical order for proper
		grade of oil for existing condi-
		tion.
	Ambient temperatures to	Apply heat to engine.
	cold	
	Exhaust valves sticking	Remove cylinder head and recondi-
	or burned	tion exhaust valves.
	Faulty fuel pump	Replace defective pump.
	Cylinder head gasket	Replace damaged cylinder head
	leaking	gasket or cylinder head if
Teaking		cracked.
	Internal seizure	Disassemble engine and replace
		damaged parts.
Engine starting	Batteries giving low	Check and recharge batteries.
motor inoperative	output	
	Door ground compaties	Charle along and at the
	Poor ground connection	Check, clean and tighten.
	Broken starter pinion	Replace starter motor.
	220Men dearter printon	Acptace Starter MOTOL.

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY			
Engine starting motor inopertive - continued	Faulty switch Fuse blown	Replace switch.			
- continued		Check fuse. Investigate cause of overload.			
	Faulty starter solenoid	Replace solenoid.			
	Internal starter fault	Replace starter motor.			
Engine runs unevenly or stalls	Fuel filters dirty	Check fuel filters and replace elements if necessary in accordance with engine technical order.			
	Insufficient fuel	Fill tank above fuel suction line. Check for line leaks.			
	Low coolant temperature	Thermostat not closing. Inspect and replace if necessary.			
	Engine governor	Check governor linkage for bind-ing.			
	Leaking fuel injector	Replace faulty injector.			
	Low compression	Check cylinder compression and			
	Low compression-cont'd	Consult engine technical order if pressures are low.			
	Insufficient air	Check for damaged or dirty air cleaners and clean or replace damaged parts.			
	Needs a tune-up	Tune engine in accordance with engine technical order.			

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY					
Detonation	Low coolant temperature	Thermostat not closing. Inspect and replace if necessary.					
	Faulty injector	Replace faulty injectors.					
Engine runs to	Excessive governor spring tension	Adjust governor spring.					
Engine runs to slow	Insufficient governor spring tension	Adjust governor spring.					
Engine overheats	Insufficient heat trans- fer	Clean and flush cooling system.					
		Clean radiator core to unplug air passages.					
		Adjust fan belts to proper tension.					
		Check coolant level.					
		Inspect for collapsed or disintegrated hoses. Replace faulty hose.					
		Thermostat not opening. Replace thermostat if faulty.					
		Check water pump for damaged impeller. Replace if necessary.					
Engine runs cold	Thermostat not closing	Remove and inspect thermostat. Replace if necessary.					

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY
Engine emits grey or black smoke	High exhaust back press- ure	Check exhaust piping or muffler for obstruction. Check exhaust back pressure with manometer.
	Restricted air inlet	Check cylinder lines parts, air cleaner and blower screen. Clean these items.
	Improperly timed injectors	Time the fuel injector in accordance with engine technical order.
	Improper grade of fuel	Drain and fill system with proper fuel grade. See engine technical order.
Engine emits blue smoke	Lubricating oil not fully burned in cylinder	Replace oil control rings.
	Excessive oil in crank- case	Fill crankcase to proper level.
Engine emits white smoke	Misfiring cylinders	Check for faulty injectors and replace as necessary.
	Low compression	Consult engine technical order for proper values and actions.
	Improper grade of fuel	Drain fuel tank and fill with proper fuel grade.
Air leaks	Loose fuel connections or cracked fuel line	Replace all damaged connectors and damaged fuel lines. Tighten.
	Filters leaks	Inspect fuel filters gasket and replace if necessary.

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY
Fuel obstruction	Clogged fuel filters	Replace clogged or faulty filters.
	Clogged or bent fuel lines	Disconnect fuel lines and remove obstruction. Replace damaged fuel lines.
	Faulty fuel pump	Replace fuel pump.
High oil consump-	Loose connection	Tighten connections and replace defective connection.
	Oil filter gaskets leaking	Tighten and replace oil filter gasket if necessary.
Oil in coolant	Oil cooler core leaks	Replace oil cooler core and flush cooling system to remove oil from cooling system.
Low engine oil pressure	Low oil supply	Refill engine crankcase to full mark.
	Low oil viscosity	Drain engine oil sump; refill with fresh oil of specified grade.
	Clogged oil filter	Remove and clean or replace.
	Engine bearings worn	Remove and replace engine.
	Internal oil leaks	Remove and replace engine.
	Oil pressure gage and/or sensing unit defective	Replace gage and/or sensing unit.

Table 5-1 Troubleshooting - Continued

TROUBLE	PROBABLE CAUSE	REMEDY
Engine knocks	Engine operating under heavy load at low speed	Increase engine rpm.
	Improper fuel	Use specified grade of fuel.
	Defective valve lifter	Remove engine; replace valve lifter.
	Scored valve stems	Remove engine, replace cylinder assembly.
	Warped valves	Remove engine; replace cylinder assembly.
	Loose or burned connect-ing rod bearing	Remove engine.
	Worn or loose piston pin	Remove engine; replace cylinder assembly.
	Carbon or lead deposits in cylinder head	Remove engine; replace cylinder assembly.

LUBRICATION AND PREVENTIVE MAINTENANCE CHART

TABLE 5-2

	TIME INTERVAL								
Item Operation Hours	Daily	8	50	100	200	300	500	1,000	2,000
l. Engine Oil*	X								
2. Oil Filter **									
3. Coolant and Filter	X						X	X	
4. Hoses							X		
5. Radiator								Х	
6. Heat Exchanger Electrodes									
and Core							X	X	
7. Raw Water Pump	X								
8. Fuel Tank	X						X		
9. Fuel Strainer and Filter						X			
10. Air Cleaner		Х					X		
11. Air Box Drains							X	Х	
12. Ventilating System								Х	
13. Blower Screen								X	
14. Starting Motor***									
15. Battery-Charging									
Generator				Х	Х		Х		X
16. Battery				Х					
17. Tachometer Drive				Х					
18. Throttle					Х				
19. Drive Belts					Х				
20. Overspeed Governor							Х		
21. Shut-Down System						Х			

^{*} Change oil every 100 hours for new engines, then establish an interval based on experience with engine.

^{**} Change filters with oil changes.

^{***} When removed from engine.

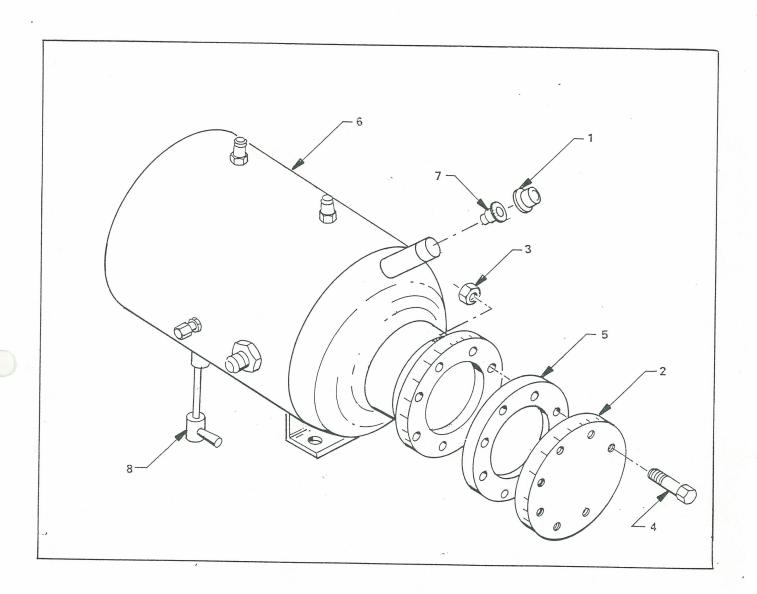
- 5-21. COMPONENT REPAIR. Component repair consists of performing any repair or part replacement necessary to restore the component to a serviceable condition. The operator shall limit repair to only the procedures detailed herein.
- 5-22. CLEANING. The Test Stand should be cleaned whenever there is an accumulation of dust or dirt on the exterior of the cabinet or control panel, or whenever grease, oil, or similar foreign matter is inadvertently spilled within the Stand. Clean the Test Stand in accordance with T.O. 35-1-12, and common shop practices.

WARNING

Use solvent in well ventilated area. Avoid contact with open flames and avoid inhalation of fumes, as injury could result.

- a. Clean all disassembled components, except electrical parts and prelubricated bearings, with solvent, Federal Specification P-D-680. Use a stiff-bristle, non-metallic brush to ensure that all orfices, packing grooves, and ports are thoroughly clean.
- b. Dry all cleaned parts using compressed air at approximately 15 psig, or a clean, lint-free cloth.
- c. After cleaning, inspect all parts for wear and defects, such as nick, burrs, scoring, cracks, corrosion, or similar defects. Inspect all threaded area for stripped, crossed, or broken threads. Inspect mounting holes for elongation which would effect component performance.

CAUTION


Do not use abrasive cloth, Federal Specification P-C-458, on aluminum

or magnesium alloy parts, as is contains an iron oxide which causes rapid oxidation of these metals.

- d. Polish out minor defects from noncritically dimensioned surfaces, using abrasive cloth, Federal Specification P-C-458, for ferrous alloy parts and abrasive cloth, Federal Specification P-C-451, for alumninum and magnesium alloy parts. Ensure that precision fits, and seating or sealing surfaces are not destroyed. Reclean any repaired parts.
- e. Replace all performed packings, back rings, gaskets, and seals regardless of condition, each time a component is required.
- f. During reassembly or hydraulic components, assemble parts dripping wet, dipping them in hydraulic fluid, Military Specification MIL-H-5606.
- g. Perform hydraulic component tests using a clean source of hydraulic fluid, Military Specification MIL-H-5606, filtered to 10 microns, or better.
- 5-23. REPAIR or REPLACEMENT.
- 5-24. FILTERS. All systems filters have been covered in this section. Replace any damaged parts on these filters, especially o-rings. Do not attempt repair.
- 5-25. INSPECTION.
- 5-26. HYDRAULIC RESERVOIR INSPECTION. Refer to figure 5-4 and inspect the hydraulic reservoir as follows:

WARNING

Hydraulic system and reservoir must be depressurized before performing maintenance

or servicing of system. Failure to comply may result in injury to personnel.

- a. Remove reservoir filler cap (1) and drain hydraulic fluid from reservoir by opening the drain valve (8) at the end of the drain tube. Empty into a suitable container. Close drain valve.
- b. Remove reservoir access cover (2), and gasket (5) from reservoir (6) by removing bolts (4) and nuts (3).

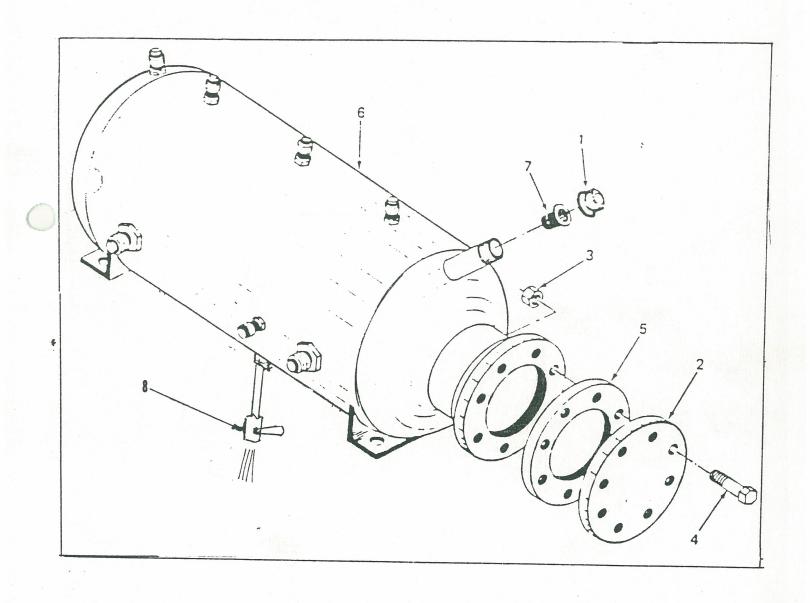


Figure 5-4. Hydraulic Reservoir

c. Inspect interior of reservoir for contaiminants.

WARNING

Use cleaning solvent, P-D-680, type II, in a well ventilated area. Do not inhale solvent vapors or allow solvent to contact skin. Keep solvent away from open flame. Failure to comply may result in injury to personnel.

- d. Clean interior of reservoir, if required, by flushing and draining with cleaning solvent, Federal Specification P-D-680, Type II.
- e. Install reservoir access cover (2), gasket (5), to reservoir with bolts (4) and nuts (3).
- f. Fill reservoir with hydraulic fluid, Federal Specifications MIL-H-5606 or MIL-H-83282. Replace filler cap.

Figure 5-5. Fill System Filter

- 5-27. FILL SYSTEM FILTER INSPECTION. Check fill system filter for excessive pressure drop as follows:
 - a. Press the SYSTEM FILL valve (14, Figure 4-2).
- b. Determine pressure drop by noting FILL PRESSURE gage (21, Figure 4-1). The difference between the readings of the red and black gage needles is the pressure drop across the filter.
- c. When pressure drop reaches 50 psig, cleaner replace filter element (3, Figure 5-5) by unscrewing bowl (1) and removing the element.

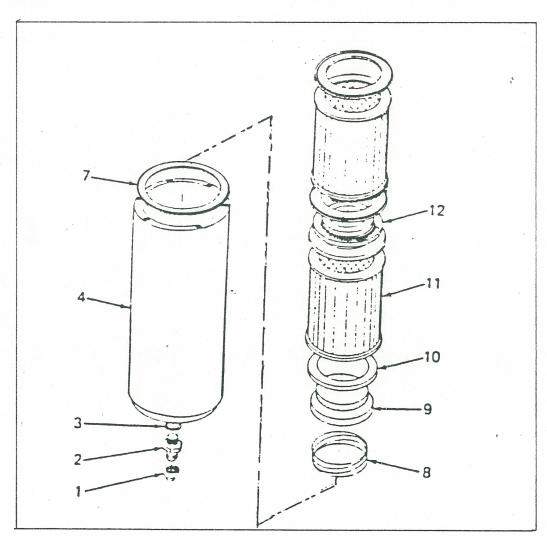


Figure 5-6. Low Pressure Filter Assembly

- 5-28. BOOST SYSTEM FILTER INSPECTION. Check boost system filter (7, Figure 6-1) for excessive pressure drop as follows:
- a. Start the test stand. Ensure that engine is operating at 2500 rpm.
- b. Turn GAGE SELECTOR valve (14, Figure 4-3) to boost outlet position and note reading of LOW PRESSURE gage (11).
- c. Turn GAGE SELECTOR valve (14, Figure 4-3) to return and note reading of LOW PRESSURE gage (11).
- d. Subtract pressure of step 3 from pressure of step 2 to determine pressure drop across filter element.
- e. When pressure drop reaches 30 psig, replace filter elements as follows (see Figure 5-6).

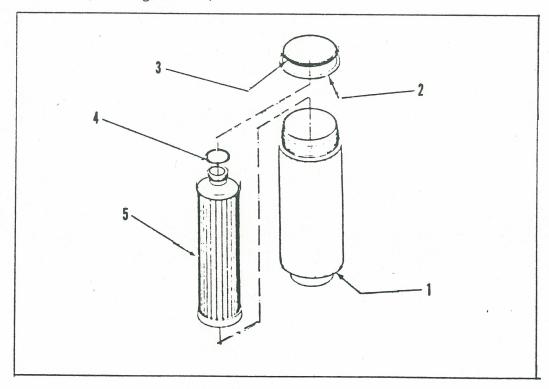


Figure 5-7. High Pressure Filter

- (1) Unscrew the six bolts on top of the low pressure manifold that secure the low pressure filter shell (4) to the manifold.
- (2) Remove filter elements (11).
- (3) Wash shell in fuel oil and dry.
- (4) Insert spring (8), spring retainer (9), rubber gasket (10), filter (11), gasket (10), spacer (12), gasket (10), filter (11), gasket (10) into filter shell (4).
- (5) Place gasket (7) on filter shell and match boler.
- (6) Insert filter assembly into low pressure manifold and screw with six bolts.
- 5-29. HIGH-PRESSURE FILTERS INSPECTION. If the HP DIRTY indicator (14A, Figure 4-2) illuminates replace high-pressure filter (22, Figure 6-1) as follows (see Figure 5-7).
- a. Unscrew filter shell (1) from high pressure HP manifold. (The shell in threaded at the top).
 - b. Unscrew filter element (5) from HP manifold.
 - c. Remove gasket (2), (3), (4) and discard.
 - d. Wash filter shell in fuel oil and dry thoroughly.
 - e. Install new gaskets (2) and (3) into HP manifold.
- f. Install new gasket (4) on element. Screw element into HP manifold.
 - g. Screw filter shell (1) into HP manifold.

- 5-30. WARNING HORN. If the warning horn sounds during operation, isolate trouble as follows:
- a. Check temperature gage (3). If fluid temperature exceeds +71°C (+160°F) proceed as follows:

NOTE

If fluid temperature is below +71°C (+160°F), skip to step b.

- (1) Verify that cooler bypass valve (21) is closed.
- (2) Verify that SYSTEM RELIEF (17) valve is properly adjusted.
- (3) Open system BYPASS valve (21).
- (4) Press SYSTEM FILL valve (14) to introduce cool fluid from stand reservoir into the system.
- (5) Operate system with SYSTEM FILL VALVE (14) open until fluid temperature drops below +54°C (+130°F).
- (6) Release SYSTEM FILL valve (14) and proceed with tests.
- b. Check boost pressure in both systems as follows:
 - (1) Turn GAGE SELECTOR valve (14, Figure 4-3) to boost outlet position.
 - (2) Check boost PRESSURE gage (19). If bost pressure is below 75 psig, immediately shut down the stand and trouble-shoot the applicable system.
- c. Check fuel level. Add fuel as required. If fuel level is

satisfactory, check low fuel level warning switch. Replace if defective.

- d. Check engine coolant temperature gage. If gage reads above 220°F, refer to Table 5-1 Troubleshooting.
- e. Check engine oil pressure gage. If gage reads 4 psi or less, refer to Table 5-1 Troubleshooting.
- f. If all gage reading are within limits, check the faulty switches. Refer to Fig. 4-4.
- 5-31. CALIBRATION. Calibration of the entire Test Stand is not possible. Instruments which appear inaccurate or erratic during operation shall be individually calibrated as described in 5-20 thru 5-25 paragraphs.
- 5-32. HIGH PRESSURE GAGE. This output pressure gage can be zero adjusted with an adjusting screw on the face of the gage. Loosen knob on bottom of gage face to open front ring. Calibration shall be as follows:
- a. Connect suitable 0-6000 psig standard test gage to high presure test port on control panel.
- b. Operate Test Stand and compare Stand gage and testing gage readings at various prssures. The Test Stand gage must agree with the test gage within 1 percent full scale plus standard gage tolerance. If Test Stand gage readings are inaccurate or erractic, replace gage.
- c. The gage may also be checked by connecting a test gage and hydraulic pressurizing equipment to te test port. The high pressure gage shutoff valve must be closed to isolate the stand gage and test gage from the hydraulic system. Thus hydraulic pressure may be applied to the gages to compare readings for calibration.

- 5-33. LOW PRESSURE GAGE. This gage shall be zero-adjusted and calibrated in the same manner as the high pressure gage (paragraph 5-18). Use low pressure test port on control panel. Isolate low pressure gage by turning selector valve on control panel to OFF position. Gage shall read within two percent full scale of test gage, plus test gage tolerance.
- 5-34. FLOWMETER. Calibration of the flowmeter, is not required as it is used for indication, only. However, the accuracy of the fluid volumne indicated on the flowmeter may be confirmed by connecting a calibrated test flowmeter in the suction return line of the Test Stand. Operate Stand accordinly.
- 5-35. FLUID TEMPERATURE GAGE. This gage is equipped with five-foot capillary tube and a sensing bulb. To calibrate, proceed as follows:
 - a. Disconnect sensing bulb at thermowell.
- b. Place bulb and a test thermometer of known accuracy in a well agitated constant-temperature bath. Place bulb and thermometer as close together as possible.
- c. The bath must be situated at an elevation relative to that of the thermowell, with the bath temperature approximating the mid-point reading of the gage.
- d. Allow approximately five minutes before comparing the temprature reading of the gage with that of the test thermometer.
- e. If readings do not agree, remove face of gage and adjustpointer to indicate the correct temperature.
- f. Calibration is not required, provided reading is compared with and instrument of know accuracy.
- 5-36. HOURMETER. To verify the accuracy of the hourmeter, record a

specific period of operating time and compare the reading on the hourmeter with that of a standard meter of know accuracy. Replace hourmeter it not correct. Calibration is not required.

5-37. TEST. Bench Testing of individual components is not applicable to this equipment.

SECTION VI

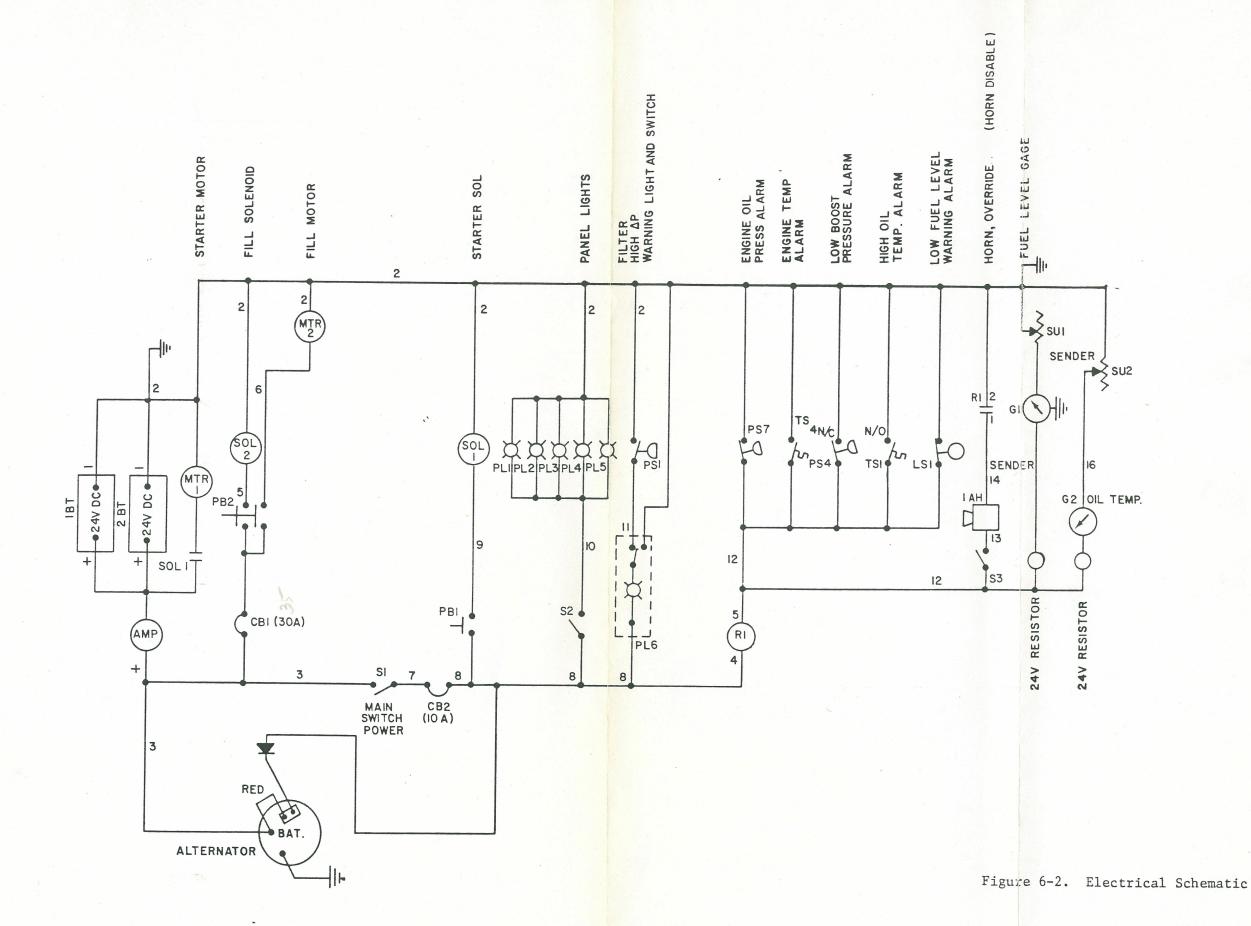
DIAGRAMS

6-1. GENERAL. This section provides the diagrams and wire lists necessary for troubleshooting, maintenance and repair of the Test Stand. The Diagram for the Test Stand are as follows:

Hydraulic Diagram

Figure 6-1

Electrical Diagram


Figure 6-2

Key to Figure 6-2

1AH	Horn	PL4	Panel Light
AMP	Ammeter	PL5	Panel Light
1BT	Battery, 24 VAC	PL6	Light, Panel, Filter, High
2BT	Battery, 24 VAC		Delta P
CB1	Circuit Breaker, 30A	PS1	Pressure Switch, Filter
CB2	Circuit Breaker, 10A	PS4	Pressure Switch, Low Boost
G1	Gage, Fuel Level	PS7	Pressure Switch, Engine Oil
G2	Gage, Oil Temperature	R1	Relay
LS1	Level Switch, Low Fuel	S1	Switch, Main Power
MTR1	Motor Starter	S2	Switch, Panel Light
MTR2	Fill Motor	S3	Overide (Horn Disable)
PB1	Pushbutton Switch, Starter	SOL1	Solenoid, Starter
PB2	Pushbutton Switch, Fill	SOL2	Solenoid, Fill
PL1	Panel Light	SU1	Sending Unit, Fuel Level
PL2	Panel Light	SU2	Sending Unit, Oil Temperature
PL3	Panel Light	TS1	Temperature Switch, High Oil
		TS4	Temperature Switch, Engine

SECTION VII

RECOMMENDED LIST OF SPARES

7-1. The following provides a listing of spare parts recommended to support the MJ-1 test stand in normal service.

Part Number		Description	
	AC-9516F-1	H.P. Filter Software Kit	
	AN 6235-4A	Element, Fill Filter	
	AN 6236-2	Filter Element, L.P.	
	B-43ZF2	Gage, Selector Valve	
	DB-1296	Core, Oil Cooler	
	D43920-3	Cable, Throttle	
	D43920-3	Cable, Shutdown	
	G605-12-A-1	Gage, Liquid Level, Hydraulic	
	KD1-10	Fuse	
	MS 25331-6	Light, Filter Warning	
	MS 35058-22	Switch, Toggle	
	T-553	Fuel Filter	
	Z210S1	Valve, Fluid Sampling	
	1A30-R-60S	Relief Valve, H.P.	
	10250T101-2	Pushbutton Switch, Fill	
	109-CP-04	Selector Valve, Reservoir	
	1300103	Solenoid Motor	
	150-906	Relay, Horn	
	1582149	Cable, Tachometer	
	17390	Fan Belts (2)	
	20313	Solenoid Valve, Fill	
	25010971	Oil Filter	
	284-K	Gage, Oil Temperature	
	3C60-S	Check Valve, Fill	

50053-1	Seal Kit, Pump
5237-347	Tire
5658116	Tach/Hourmeter
60007-1	Light Bulb, D.C.
60008-1	Light Bulb, D.C.
60016-1	Circuit Breaker, D.c.
6426397	Sender, Fuel
7-50-10	Inner Tube
8223704-1	Gasket, Filter Element
8223706-1	Gasket, Filter Housing
8223714-1	Relief Valve, L.P.
8223715-1	Relief Valve, Thermal
8223717-1	Valve, Bleed
8223718-1	Sight Glass, Sight, Oil
8223719-1	Valve, Throttling
8223720-1	Check Valve, Low Pressure
8223722-1	Pressure Switch, Boost
8223723-1	Switch, Temperature
8223725-1	Gage, L.P.
8223726-1	Gage, H.P.
8223727-1	Gage, Temperature, Hydraulic
8223740-1	Flowmeter Glass, Float, Guide
8223762-1	Pressure Gage, Duplex
8223769-1	Pressure Switch, Differential
8224616-1	Switch, Low Fuel Level
82304	Gage, Oil Pressure, Engine
82712	Gage, Fuel
829525-2	Resistor
8923909	Sender, Oil Pressure, Engine
2217227	. : : : : : : : : : : : : : : : : : : :

Description

Water Temperagure Gage

Part Number

924789D2

MJ-X DRAWINGS

DWG #	TITLE
10016	Internal Components
	Internal Components
10017	Gearbox/Pump Assembly
10018	Diesel Engine Assembly
20023	Frame, Lower, Mod
20024	Frame, Mod
30042	Panel, Aux, Inst
30043	Panel, Hyd, Inst
30044	Control Panel Assembly
40184	Bracket Gear Box
40185	Drive Shaft Assembly
40187	Panel, Aux (holes)
40188	Bracket, Hyd Res
40189	Bracket, Engine Support (rear)
40190	Beam, Engine Support (front)
40191	Braces, Radiator Support
40192	Braces, Muffler
40193	Bracket, Fuel Tank
40194	Beam, Engine Support (rear)
40195	Flywheel Adapter
50068	Fill Manifold/Solenoid Assembly
50069	Manifold Assembly
60022	Pan Battery
70008	Electrical Schematic

The MJ-X was a one shot affair;

me unit (mk-3 electric) converted to drisel. Went

to asia somewhere. Because it was a me unit

to anylete, methodicis, resort were not kept.

made it out of space part lying around.

July 1, 1985

FPI Industries, Inc. 5333 McConnell Avenue Los Angeles, California 90066

FPI Industries:

On May 20, 1985, a customer of yours picked up an MJ-1 Hydraulic Test Stand Unit from APS Systems in Port Hueneme, California (reference your P.O. #11525C).

At the time of delivery, the Illustrated Parts Manuals were not ready. We would appreciate it very much if you would please forward the enclosed parts manuals to your customer, as the manuals are required to order parts.

Cordially,

ROBERT CHEVERES

Technical Data Department

Enclosures

RC/pa